Communications - Scientific Letters of the University of Zilina 2020, 22(3):119-127 | DOI: 10.26552/com.C.2020.3.119-127

Fiber Optic Phase-Based Sensor for Detection of Axles and Wheels of Tram Vehicles

Jan Nedoma1, Michal Kostelansky1, Michael Fridrich1, Jaroslav Frnda2, Miroslav Pinka3, Radek Martinek4, Martin Novak1, Stanislav Zabka1
1 Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Czech Republic
2 Department of Quantitative Methods and Economic Informatics, Faculty of Operation and Economics of Transport and Communications, University of Zilina, Slovakia
3 Department of Geotechnics and Underground Engineering, Faculty of Civil Engineering, VSB - Technical University of Ostrava, Czech Republic
4 Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Czech Republic

This paper presents a novelty approach to usage of the fiber-optic phase-based sensor in railway transportation. We designed and tested the real deployment of this sensor working on the principle of light interferences within optical fibers. The proposed construction of the sensor allowed to increase the sensitivity and thanks to this can be detected and calculated individual axles and wheels of tram vehicles. We performed long-time period measurements (April to September 2019) in diverse climatic conditions, including measurements of 642 tram passages (several different construction types) in real urban traffic. The detection accuracy level was slightly above 99.4 %.

Keywords: vehicle transport; fiber-optic; sensor; interferometric sensor; Mach-Zehnder

Received: November 22, 2019; Accepted: January 28, 2020; Published: July 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nedoma, J., Kostelansky, M., Fridrich, M., Frnda, J., Pinka, M., Martinek, R., Novak, M., & Zabka, S. (2020). Fiber Optic Phase-Based Sensor for Detection of Axles and Wheels of Tram Vehicles. Communications - Scientific Letters of the University of Zilina22(3), 119-127. doi: 10.26552/com.C.2020.3.119-127
Download citation

References

  1. NEDOMA, J., FAJKUS, M., MARTINEK, R., WITAS, K., MEC, P., JARGUS, J., HEJDUK, S., ZAVODNY, P., VASINEK, V. Sensor system based on the Mach-Zehnder interferometer for the rail transport. In: SPIE - The International Society for Optical Engineering : proceedings [online]. 10654, art. no. 106541G, 2018. Available from: https://doi.org/10.1117/12.2304582 Go to original source...
  2. NEDOMA, J., STOLARIK, M., FAJKUS, M., PINKA, M., HEJDUK, S. Use of fiber-optic sensors for the detection of the rail vehicles and monitoring of the rock mass dynamic response due to railway rolling stock for the civil engineering needs. Applied Sciences [online]. 2019, 9(1), p. 134. eISSN 2076-3417. Available from: https://doi.org/10.3390/app9010134 Go to original source...
  3. NEDOMA, J., KEPAK, S., CUBIK, J., FRNDA, J., DURICA, M., FAJKUS, M., MARTINEK, R. Vital sign monitoring: a practical solution by a MR compatible phonocardiography interferometric probe. Journal of Optoelectronics and Advanced Materials [online]. 2019, 21(11-12), p. 656-662. ISSN 1454-4164, eISSN 1841-7132. Available from: https://joam.inoe.ro/articles/vital-sign-monitoring-a-practical-solution-by-a-mr-compatible-phonocardiography-interferometric-probe/
  4. NEDOMA, J., FAJKUS, M., KAHANKOVA, R., MARTINEK, R., DVORSKY, M., VANUS, J., VASINEK, V., CVEJN, D. Fiber-optic interferometric sensor for monitoring automobile and rail traffic. Turkish Journal of Electrical Engineering and Computer Sciences [online]. 2018, 26(6), p. 2986-2995. eISSN 1303-6203. Available from: https://doi.org/10.3906/elk-1712-166 Go to original source...
  5. MARSHALL, J. A biographical dictionary of railway engineers. North Pomfret, 1978. ISBN 0715374893.
  6. CHEN, J., ROBERTS, C., WESTON.P. Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems. Control Engineering Practice [online]. 2008, 16(5), p. 585-596. ISSN 0967-0661. Available from: https://doi.org/10.1016/j.conengprac.2007.06.007 Go to original source...
  7. RSSB. Dealing with a train accident or train evacuation [online]. [Viewed 2019-11-19]. Available from: https://www.jonroma.net/media/rail/opdocs/world/uk/GERM8000-master-module%20Iss%206.pdf
  8. NIELSEN, J. C. O., JOHANSSON, A. Out-of-round railway wheels-a literature survey. Proceedings of the Institution of Mechanical Engineers. Part F: Journal of Rail and Rapid Transit [online]. 2000, 214(2), p. 79-91. ISSN 0954-4097, eISSN 2041-3017. Available from: https://doi.org/10.1243/0954409001531351 Go to original source...
  9. JARDINE, A. K. S., LIN, D., BANJEVIC. D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing [online]. 2006, 20(7), p. 1483-1510. ISSN 0888-3270. Available from: https://doi.org/10.1016/j.ymssp.2005.09.012 Go to original source...
  10. NGIGI, R. W., PISLARU, C., BALL, A., GU, F. Modern techniques for condition monitoring of railway vehicle dynamics. Journal of Physics: Conference Series. 2012, 364, con. 1. ISSN 1742-6588, eISSN 1742-6596. Available from: https://doi.org/10.1088/1742-6596/364/1/012016 Go to original source...
  11. SMUTNY, J., NOHAL, V., VUKUSICOVA, D., SEELMANN, H. Vibration analysis by the Wigner-Ville transformation method. Communications - Scientific Letters of the University of Zilina [online]. 2018, 20(4), p. 24-28. ISSN 1335-4205, eISSN 2585-7878. Available from http://komunikacie.uniza.sk/index.php/communications/article/view/635 Go to original source...
  12. BIAGI, M., CARNEVALI, L., PAOLIERI, M., VICARIO. E. Performability evaluation of the ERTMS/ETCS - level 3. Transportation Research Part C: Emerging Technologies [online]. 2017, 82, p. 314-336. ISSN 0968-090X. Available from: https://doi.org/10.1016/j.trc.2017.07.002 Go to original source...
  13. BABCZYNSKI, T., MAGOTT, J. Dependability and safety analysis of ETCS communication for ERTMS level 3 using performance statecharts and analytic estimation. Advances in Intelligent Systems and Computing [online]. 2014, 286, p. 37-46. ISBN 978-3-319-07012-4, eISBN 978-3-319-07013-1. Available from: https://doi.org/10.1007/978-3-319-07013-1_4 Go to original source...
  14. KEPAK, S., CUBIK, J., ZAVODNY, P., SISKA P., DAVIDSON, A., GLESK, I., VASINEK, V. Fibre optic track vibration monitoring system. Optical and Quantum Electronics [online]. 2016, 48, p. 354. ISSN 0306-8919, eISSN 1572-817X. Available from: https://doi.org/10.1007/s11082-016-0616-9 Go to original source...
  15. KEPAK, S., CUBIK, J., ZAVODNY, P., HEJDUK, S., NEDOMA, J., DAVIDSON, A., VASINEK, V. Fibre optic portable rail vehicle detector. In: SPIE - The International Society for Optical Engineering : proceedings. 10142. 2016, p. 402-408. Available from: https://doi.org/10.1117/12.2257061 Go to original source...
  16. KEPAK, S., CUBIK, J., NEDOMA, J., HRUBY, D., HEJDUK, S., ZAVODNY, P., FAJKUS, M., VASINEK, V. Compact fiber optic trackside sensor for rail vehicle detection and analysis. IFAC-PapersOnLine [online]. 2018, 51(6), p. 220-224. ISSN 2405-8963. Available from: https://doi.org/10.1016/j.ifacol.2018.07.157 Go to original source...
  17. NEDOMA, J., FAJKUS, M., ZABKA, S., MARTINEK, R. Fiber optic tram vehicle detector. Optoelectronics and Advanced Materials - Rapid Communications [online]. 2019, 13(1-2), p. 37-43. ISSN 1842-6573, eISSN 2065-3824. Available from: https://oam-rc.inoe.ro/articles/fiber-optic-tram-vehicle-detector/
  18. PAPP, B., DONNO, D., MARTIN, J. E., HARTOG, A. H. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments. Geophysical Prospecting [online]. 2017, 65, p. 1186-1204. eISSN 1365-2478. Available from: https://doi.org/10.1111/1365-2478.12471 Go to original source...
  19. NEDOMA, J., FAJKUS, M., MARTINEK, R., MEC, P., NOVAK, M., BEDNAREK, L., VASINEK, V. Interferometer for securing entrance areas of buildings. In: SPIE - The International Society for Optical Engineering : proceedings. 10440. 2017, p. 176-181. Available from: https://doi.org/10.1117/12.2277108 Go to original source...
  20. FENG, L. L., WANG, Y. T., RUAN, C., TAO, S. Road vehicle information collection system based on distributed fiber optics sensor. Advanced Materials Research [online]. 2014, 1030-1032, p. 2105-2109. ISSN 1662-8985. Available from: https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.2105 Go to original source...
  21. GOODWIN, E. P., WYANT J. C. Field guide to interferometric optical testing. Field Guide Series, SPIE, 2006. ISBN 978-081-9465-108. Go to original source...
  22. KOLAR, V., HRBAC, R., MLCAK, T., STYSKALA, V. Regulated electric drainage and its interference with track circuits. Advances in Electrical and Electronic Engineering [online]. 2018, 16(2), p. 205-210. ISSN 1336-1376, eISSN 1804-3119. Available from: https://doi.org/10.15598/aeee.v16i2.2478 Go to original source...
  23. BORN, M., WOLF, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th ed. New York, NY, USA: Cambridge University Press, 1999. ISBN 05-216-4222-1. Go to original source...
  24. ZENG, M., ZHAO, H., WU, D., CHEN, H., CAI, J. A vibration-based traffic monitoring system using distributed optical sensing technology. Journal of Testing and Evaluation [online]. 2020, 48. ISSN 0090-3973. Available from: https://doi.org/10.1520/JTE20190184 Go to original source...
  25. CSN 34 1500 ED.2 (341500) - Czech technical standard [online] [Viewed 2019-11-19]. Available from: http://www.technicke-normy-csn.cz/341500-csn-34-1500-ed-2_4_84547.html
  26. DPO - city public transport company from Ostrava [online] [Viewed 2019-11-19]. Available from: https://www.dpo.cz/o-spolecnosti/vozy/tramvaje/3448-vario-lfr.html
  27. ISO standard 4866:2010. Mechanical vibration and shock, vibration of fixed structures - guidelines for the measurement of vibrations and evaluation of their effects on structures [online] [Viewed 2019-11-19]. Avaliable from: https://www.iso.org/standard/38967.html
  28. FANG, X., LIN, S., YANG, Z., LIN, F., SUN, H., HU, L. Adhesion control strategy based on the wheel-rail adhesion state observation for high-speed trains. Electronics [online]. 2018, 7(5), p. 70. eISSN 2079-9292. Available from: https://doi.org/10.3390/electronics7050070 Go to original source...
  29. NOWAKOWSKI, T., KOMORSKI, P., SZYMANSKI, G. M., TOMASZEWSKI, F. Wheel-flat detection on trams using envelope analysis with Hilbert transform. Latin American Journal of Solids and Structures [online]. 2019, 16(1). ISSN 1679-7817, eISSN 1679-7825. Available from: https://dx.doi.org/10.1590/1679-78255010 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.