Communications - Scientific Letters of the University of Zilina 2020, 22(3):128-139 | DOI: 10.26552/com.C.2020.3.128-139

Improving TSP Solutions Using GA with a New Hybrid Mutation Based on Knowledge and Randomness

Esra'a Alkafaween1, Ahmad B. A. Hassanat2
1 IT Department, Mutah University, Karak, Jordan
2 IT Department, Mutah University, Karak, Jordan and Computer Science Department, Community College, University of Tabuk, Saudi Arabia and Industrial Innovation and Robotics Center, University of Tabuk, Saudi Arabia

Genetic algorithm (GA) is an efficient tool for solving optimization problems by evolving solutions, as it mimics the Darwinian theory of natural evolution. The mutation operator is one of the key success factors in GA, as it is considered the exploration operator of GA.
Various mutation operators exist to solve hard combinatorial problems such as the TSP. In this paper, we propose a hybrid mutation operator called "IRGIBNNM", this mutation is a combination of two existing mutations; a knowledgebased mutation, and a random-based mutation. We also improve the existing "select best mutation" strategy using the proposed mutation.
We conducted several experiments on twelve benchmark Symmetric traveling salesman problem (STSP) instances. The results of our experiments show the efficiency of the proposed mutation, particularly when we use it with some other mutations.

Keywords: knowledge-based mutation; inversion mutation; slide mutation; RGIBNNM; SBM

Received: August 18, 2019; Accepted: December 5, 2019; Published: July 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Alkafaween, E., & Hassanat, A.B.A. (2020). Improving TSP Solutions Using GA with a New Hybrid Mutation Based on Knowledge and Randomness. Communications - Scientific Letters of the University of Zilina22(3), 128-139. doi: 10.26552/com.C.2020.3.128-139
Download citation

References

  1. SONI, N., KUMAR, T. Study of various mutation operators in genetic algorithms. International Journal of Computer Science and Information Technologies [online]. 2014, 5(3), p. 4519-4521. ISSN 0975-9646. Available from: http://ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503404.pdf
  2. POTVIN, J.-Y. Genetic algorithms for the traveling salesman problem. Annals of Operations Research [online]. 1996, 63(3), p. 337-370. ISSN 0254-5330, eISSN 1572-9338. Available from: https://doi.org/10.1007/BF02125403 Go to original source...
  3. HASSANAT, A. B. A., ALKAFAWEEN, E. On enhancing genetic algorithms using new crossovers. International Journal of Computer Applications in Technology [online]. 2017, 55(3), p. 202-212. ISSN 0952-8091, eISSN 1741-5047. Available from: https://doi.org/0.1504/IJCAT.2017.084774 Go to original source...
  4. SAMANTA, S., DE, A., SINGHA, S. Solution of traveling salesman problem on scx based selection with performance analysis using genetic algorithm. International Journal of Engineering Science and Technology [online]. 2011, 3(8), p. 6622-6629. eISSN 0975-5462. Available from: http://www.ijest.info/docs/IJEST11-03-08-258.pdf
  5. RAO, A., HEGDE, S. K. Literature survey on travelling salesman problem using genetic algorithms. International Journal of Advanced Research in Eduation Technology [online]. 2015, 2(1), p. 42-45. ISSN 2394-6814, eISSN 2394-2975. Available from: http://ijaret.com/wp-content/themes/felicity/issues/vol2issue1/anitha.pdf
  6. RAI, K., MADAN, L., ANAND, K. Research paper on travelling salesman problem and it's solution using genetic algorithm. International Journal of Innovative Research in Technology [online]. 2014, 1(11), p. 103-114. ISSN 2349-6002. Available from: http://ijirt.org/master/publishedpaper/IJIRT101672_PAPER.pdf
  7. FREISLEBEN, B., MERZ, P. A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In: IEEE International Conference on Evolutionary Computation : proceedings [online]. 1996. ISBN 0-7803-2902-3. Available from: https://doi.org/10.1109/ICEC.1996.542671 Go to original source...
  8. LARRANAGA, P., KUIJPERS, C. M. H., MURGA, R. H., INZA, I., DIZDAREVIC, S. Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artificial Intelligence Review [online]. 1999, 13(2), p. 129-170. ISSN 0269-2821, eISSN 1573-7462. Available from: https://doi.org/10.1023/A:1006529012972 Go to original source...
  9. DORIGO, M., GAMBARDELLA, L. M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation [online]. 1997, 1(1), p. 53-66. ISSN 1089-778X, eISSN 1941-0026. Available from: https://doi.org/10.1109/4235.585892 Go to original source...
  10. KARKORY, F. A., ABUDALMOLA, A. A. Implementation of heuristics for solving travelling salesman problem using nearest neighbour and minimum spanning tree algorithms. International Journal of Computer and Information Engineering [online]. 2013, 7(10), p. 1524-1534. ISNI 0000000091950263. Available from: https://publications.waset.org/17101/pdf
  11. MALEK, M., GURUSWAMY, M., PANDYA, M., OWENS, H. Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Annals of Operations Research [online]. 1989, 21(1), p. 59-84. ISSN 0254-5330, eISSN 1572-9338. Available from: https://doi.org/10.1007/BF02022093 Go to original source...
  12. GENDREAU, M., HERTZ, A., LAPORTE, G. A tabu search heuristic for the vehicle routing problem. Management Science [online]. 1994, 40(10), p. 1276-1290. ISSN 0025-1909, eISSN 1526-5501. Available from: https://doi.org/10.1287/mnsc.40.10.1276 Go to original source...
  13. SHI, X. H., LIANG, Y. C., LEE, H. P., LU, C., WANG, Q. X. Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters [online]. 2007, 103(5), p. 169-176. ISSN 0020-0190, eISSN 1872-6119. Available from: https://doi.org/10.1016/j.ipl.2007.03.010 Go to original source...
  14. DURBIN, R., SZELISKI, R., YUILLE, A. An analysis of the elastic net approach to the traveling salesman problem. Neural Computation [online]. 1989, 1(3), p. 348-358. ISSN 0899-7667, eISSN 1530-888X. Available from: https://doi.org/10.1162/neco.1989.1.3.348 Go to original source...
  15. AARTS, E. H., STEHOUWER, H. P. Neural networks and the travelling salesman problem. In: ICANN'93 : proceedings. 1993. Go to original source...
  16. ALKAFAWEEN, E. Novel methods for enhancing the performance of genetic algorithms. Master thesis. Jordan: Mutah University, 2015.
  17. GOLDBERG, D. E. Genetic algorithms in search, optimization, and machine learning. 1.ed. Boston: Addison-Wesley Professional, 1989. ISBN 978-0201157673.
  18. HOLLAND, J. H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT Press, 1975. ISBN 9780262082136.
  19. KOREJO, I., YANG, S., LI, CH. A directed mutation operator for real coded genetic algorithms. In: European Conference on the Applications of Evolutionary Computation 2010 : proceedings [online]. Berlin, Heidelberg: Springer, 2010. ISBN 978-3-642-12238-5, eISBN 978-3-642-12239-2. p. 491-500. Available from: https://doi.org/10.1007/978-3-642-12239-2_51 Go to original source...
  20. MOHAMMED, A. A., NAGIB, G. Optimal routing in ad-hoc network using genetic algorithm. International Journal of Advanced Networking and Applications [online]. 2012, 3(05), p. 1323-1328. eISSN 0975-0282. Available from: https://www.ijana.in/papers/V3I5-4.pdf
  21. BENKHELLAT, Z., BELMEHDI, A. Genetic algorithms in speech recognition systems. In: 2012 International Conference on Industrial Engineering and Operations Management : proceedings. 2012. ISBN 9781629939117, p. 853-858.
  22. PAULINAS, M., USINSKAS, A. A survey of genetic algorithms applications for image enhancement and segmentation. Information Technology and Control. 2015, 36(3), p. 278-284. ISSN 1392-124X, eISSN 2335-884X.
  23. SRIVASTAVA, P. R., KIM, T.-H. Application of genetic algorithm in software testing. International Journal of Software Engineering and its Applications. 2009, 3(4), p. 87-96. ISSN 1738-9984.
  24. MICHALEWICZ, Z. Genetic algorithms+data structures=evolution programs [online]. 3. ed. Berlin Heidelberg: Springer Science & Business Media, 2013. ISBN 978-3-540-60676-5, eISBN 978-3-662-03315-9. Available from: https://doi.org/10.1007/978-3-662-03315-9 Go to original source...
  25. YUGAY, O., KIM, I., KIM, B., KO, F. I. Hybrid genetic algorithm for solving traveling salesman problem with sorted population. In: 2008 Third International Conference on Convergence and Hybrid Information Technology : proceedings [online]. 2008. ISBN 978-0-7695-3407-7. Available from: https://doi.org/10.1109/ICCIT.2008.373 Go to original source...
  26. HASSANAT, A., PRASATH, V., ABBADI, M., ABU-QDARI, S., FARIS, H. An improved genetic algorithm with a new initialization mechanism based on regression techniques. Information [online]. 2018, 9(7), p. 167-196. eISSN 2078-2489. Available from: https://doi.org/10.3390/info9070167 Go to original source...
  27. KOREJO, I. A., YANG, S., BROHI, K., KHUHRO, Z. U. A. Multi-population methods with adaptive mutation for multi-modal optimization problems. International Journal on Soft Computing, Artificial Intelligence and Applications [online]. 2013, 2(2), p. 1-11. ISSN 2319-4081, eISSN 2319-1015. Available from: https://doi.org/10.5121/ijscai.2013.2201 Go to original source...
  28. FRIEDRICHS, T., OLIVETO, P. S., SUDHOL, D., WITT, C. Analysis of diversity-preserving mechanisms for global exploration. Evolutionary Computation [online]. 2009, 17(4), p. 455-476. ISSN 1063-6560, eISSN 1530-9304. Available from: https://doi.org/10.1162/evco.2009.17.4.17401 Go to original source...
  29. YANG, S. Adaptive non-uniform mutation based on statistics for genetic algorithms. In: 4th Annual Conference on Genetic and Evolutionary Computation GECCO'02 : proceedings. Part II. 2002. ISBN 978-1-55860-878-8, p. 650-657.
  30. HASSANAT, A., ALMOHAMMADI, K., ALKAFAWEEN, E. ABUNAWAS, E., HAMMOURI, A., PRASATH, V. B. S. Choosing mutation and crossover ratios for genetic algorithms - a review with a new dynamic approach. Information [online]. 2019, 10(12), p. 390-426. eISSN 2078-2489. Available from: https://doi.org/10.3390/info10120390 Go to original source...
  31. NICOARA, E. S. Mechanisms to avoid the premature convergence of genetic algorithms. Petroleum - Gas University of Ploiesti Bulletin - Mathematics, Informatics, Physics Series [online]. 2009, 61(1), p. 87-96. ISSN 1224-4899, eISSN 2067-242X. Available from: http://bulletin-mif.unde.ro/docs/20091/12NICOARA_SIMONA.pdf
  32. ABDOUN, O., ABOUCHABAKA, J. A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. International Journal of Computer Applications [online]. 2011, 31(11), p. 49-57. ISSN 0975-8887. Available from: https://arxiv.org/ftp/arxiv/papers/1203/1203.3097.pdf
  33. SIVANANDAM, S. N., DEEPA, S. N. Introduction to genetic algorithms [online]. 1. ed. Berlin Heidelberg: Springer-Verlag, 2008. ISBN 978-3-540-73189-4, eISBN 978-3-540-73190-0. Available from: https://doi.org/10.1007/978-3-540-73190-0 Go to original source...
  34. BANZHAF, W. The "molecular" traveling salesman. Biological Cybernetics [online]. 1990, 64(1), p. 7-14. ISSN 0340-1200, eISSN 1432-0770. Available from: https://doi.org/10.1007/BF00203625 Go to original source...
  35. MICHALEWICZ, Z. Genetic algorithms+data structures=evolutionary programs [online]. 1. ed. Berlin Heidelberg: Springer-Verlag, 1992. ISSN 1431-0066, eISBN 978-3-662-02830-8. Available from: https://doi.org/10.1007/978-3-662-02830-8 Go to original source...
  36. FOGEL, D. A. A parallel processing approach to a multiple travelling salesman problem using evolutionary programming. In: Fourth annual Symposium on Parallel Processing : proceedings. IEEE Orange County Computer Society, 1990.
  37. LOUIS, S. J., TANG, R. Interactive genetic algorithms for the traveling salesman problem. In: GECCO-99: Genetic and Evolutionary Computation Conference : a Joint Meeting of the Eighth International Conference on Genetic Algorithms (ICGA-99) and the Fourth Annual Genetic Programming Conference (GP-99) : proceedings. Vol. 1. Morgan Kaufmann Publishers, 1999. ISBN 1558606114, 9781558606111.
  38. HASSANAT, A. A. B., ALKAFAWEEN, E., AL-NAWAISEH, N. A., ABBADI, M. A., ALKASASSBEH, M., ALHASANAT, M. B. Enhancing genetic algorithms using multi mutations: experimental results on the travelling salesman problem. International Journal of Computer Science and Information Security [online]. 2016, 14(7), p. 785-801. ISSN 1947-5500. Available from: https://arxiv.org/ftp/arxiv/papers/1602/1602.08313.pdf
  39. HONG, T. P., WANG, H. S., LIN, W. Y., LEE, W. Y. Evolution of appropriate crossover and mutation operators in a genetic process. Applied Intelligence [online]. 2002, 16(1), p. 7-17. ISSN 0924-669X, eISSN 1573-7497. Available from: https://doi.org/10.1023/A:1012815625611 Go to original source...
  40. DENG, Y. LIU, Y., ZHOU, D. An improved genetic algorithm with initial population strategy for symmetric TSP. Mathematical Problems in Engineering [online]. 2015, Article ID 212794. ISSN 1024-123X, eISSN 1563-5147. Available from: https://doi.org/10.1155/2015/212794 Go to original source...
  41. HILDING, F., WARD, K. Automated crossover and mutation operator selection on genetic algorithms. In: 9th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems : proceedings [online]. Berlin Heidelberg: Springer-Verlag, 2005. ISBN 978-3-540-28897-8, eISBN 978-3-540-31997-9. Available from: https://doi.org/10.1007/11554028 Go to original source...
  42. KATAYAMA, K., SAKAMOTO, H., NARIHISA, H. The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem. Mathematical and Computer Modelling. 2000, 31(10-12), p. 197-203. ISSN 0895-7177. Go to original source...
  43. HONG, T. P., WANG, H. S., CHEN, W. CH. Simultaneously applying multiple mutation operators in genetic algorithms. Journal of Heuristics [online]. 2000, 6(4), p. 439-455. ISSN 1381-1231, eISSN 1572-9397. Available from: https://doi.org/10.1023/A:1009642825198 Go to original source...
  44. SUN, W. A novel genetic admission control for real-time multiprocessor systems. In: 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies : proceedings [online]. 2009. ISSN 2379-5352, eISBN 978-0-7695-3914-0. Available from: https://doi.org/10.1109/PDCAT.2009.10 Go to original source...
  45. REINELT, G. TSPLIB [online]. University of Heidelberg, 1996. Available from: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
  46. DONG, M., WU, Y. Dynamic crossover and mutation genetic algorithm based on expansion sampling. In: International Conference on Artificial Intelligence and Computational Intelligence AICI 2009 : proceedings [online]. Lecture Notes in Computer Science, vol. 5855. Berlin, Heidelberg: Springer, 2009. ISBN 978-3-642-05252-1, eISBN 978-3-642-05253-8. Available from: https://doi.org/10.1007/978-3-642-05253-8_16 Go to original source...
  47. CONTRERAS-BOLTON, C., PARADA, V. Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PlOS one [online]. 2015, 10(9). eISSN 1932-6203. Available from: https://doi.org/10.1371/journal.pone.0137724 Go to original source...
  48. SPEARS, W. M. Adapting crossover in evolutionary algorithms. In: Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming. MCDONNELL, J. R., REYNOLDS, R. G., FOGEL, D. B. (eds.). 1995. eISBN 9780262290920. Available from: https://doi.org/10.7551/mitpress/2887.001.0001 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.