Communications - Scientific Letters of the University of Zilina 2020, 22(4):97-102 | DOI: 10.26552/com.C.2020.4.97-102

Fatigue Safety Coefficients for Ultra - High Region of Load Cycles

Daniel Varecha1, Slavomir Hrcek1, Otakar Bokuvka1, Frantisek Novy1, Libor Trsko2, Ruzica Nikolic2, Michal Jambor3
1 Faculty of Mechanical Engineering, University of Zilina, Slovak Republic
2 Research Centre, University of Zilina, Slovak Republic
3 Institute of Physics of Materials, Brno, Czech Republic

In this paper the authors introduce results from the field of the fatigue safety of selected steels in the region of ultra - high number of loading cycles. The fatigue tests were carried out at high frequency tension - compression loading (f = 20 kHz, T = 20 ± 5°, R = -1) in the region from N = 106 to N = 109 cycles. The fatigue safety coefficients were calculated by four methods (Goodman, Gerber, ASME elliptic and Soderberg). The percentage reduction of the fatigue safety coefficients (N = 109 vs. N = 106 cycles) was at Goodman, 7.99 / 10.83 %, Gerber, 5.27 / 8.26 %, ASME, 1.89 / 6.42 % and Soderberg, 6.51 / 10.25 %.

Keywords: structural steels, ultra - high cycles fatigue, safety coefficients

Received: April 11, 2020; Accepted: May 25, 2020; Published: October 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Varecha, D., Hrcek, S., Bokuvka, O., Novy, F., Trsko, L., Nikolic, R., & Jambor, M. (2020). Fatigue Safety Coefficients for Ultra - High Region of Load Cycles. Communications - Scientific Letters of the University of Zilina22(4), 97-102. doi: 10.26552/com.C.2020.4.97-102
Download citation

References

  1. BATHIAS, C. There is no infinite fatigue life in metallic materials. Fatigue and Fracture of Engineering Materials and Structures [online]. 1999, 22(7), p. 559-565. ISSN 1460-2695. Available from: https://doi.org/10.1046/j.1460-2695.1999.00183.x Go to original source...
  2. BATHIAS, C., PARIS, P. C. Gigacycle fatigue in mechanical practice. New York, NY: Marcel Dekker, 1999. ISBN 0-8247-2313-9.
  3. BELAN, J., KUCHARIKOVA, L., TILLOVA, E., CHALUPOVA, M. Three-point bending fatigue test of TiAl6V4 titanium alloy at room temperature. Advances in Materials Science and Engineering [online]. 2019, 2842416. ISSN 1687-8434, eISSN 1687-8442. Available from: https://doi.org/10.1155/2019/2842416 Go to original source...
  4. BOKUVKA, O., NICOLETTO, G., KUNZ, L., PALCEK, P., CHALUPOVA, M. Low and high frequency fatigue testing. Zilina, Slovakia: EDIS, University of Zilina, 2002. ISBN 80-8070-011-7.
  5. BOKUVKA, O., NICOLETTO, G., GUAGLIANO, M., KUNZ, L., PALCEK, P., NOVY, F., CHALUPOVA, M. Fatigue of materials at low and high frequency loading. Zilina, Slovakia: EDIS, University of Zilina, 2014. ISBN 978-80-554-0857-6.
  6. KAZYMYROVICH, V. Very high cycle fatigue of engineering materials - a literature review. Karlstad: Karlstad University, 2009. ISSN 1403-8099, ISBN 978-91-7063-246-4.
  7. VASKO, A., BELAN, J., KUCHARIKOVA, L., TILLOVA, E. Low and high frequency fatigue tests of nodular cast irons. Metalurgija - Metallurgy. 2017, 56(1-2), p. 25-28. ISSN 0543-5846.
  8. SKOCOVSKY, P., PALCEK, P., KONECNA, R., VARKOLY, L. Structural materials (in Slovak). Zilina, Slovakia: EDIS, University of Zilina, 2000. ISBN: 80-7100-608-4.
  9. NOVY, F., ULEWICZ, R., BOKUVKA, O., TRSKO, L., LAGO, J. Reliability and safety of structural elements in the gigacycle region of loading. Communications - Scientific Letters of the University of Zilina [online]. 2016, 18(3), p. 83-87. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/315 Go to original source...
  10. BOKUVKA, O., JAMBOR, M., HRCEK, S., STEININGER, J., NOVY, F., TRSKO, L. Design of shaft respecting the fatigue limit for ultra-high number of cycles. Periodica Polytechnica Transportation Engineering. 2019, 47(1), p. 6-12. ISSN 0303-7800, eISSN 1587-3811. Available from: https://doi.org/10.3311/PPtr.11562 Go to original source...
  11. FATURIK, L., HRCEK, S., TRSKO, L., BOKUVKA, O. Comparison of structural design in high and ultra-high cycle fatigue region. Transactions of FAMENA. 2014, 38(4), p. 1-12. ISSN 1333-1124.
  12. BUDYNAS, R. G., NISBETT, J. K., SHIGLEY, J. E. Shigley's mechanical engineering design. New York: McGraw-Hill, 2011. ISBN 978-0-07-339820-4.
  13. GUJAR, R. A., BHASKAR, S. V. Shaft design under fatigue loading by using modified goodman method. International Journal of Engineering Research and Applications. 2013, 3(4), p. 1061-1066. ISSN 2248-9622.
  14. TRSKO, L., NOVY, F., BOKUVKA, O., JAMBOR, M. Ultrasonic fatigue testing in the tension-compression mode. Journal of Visualized Experiments [online]. 2018, 133, 57007. eISSN 1940-087X. Available from: https://doi.org/10.3791/57007 Go to original source...
  15. BATHIAS, C. Piezoelectric fatigue testing machines and devices. International Journal of Fatigue [online]. 2006, 28, p. 1438-1445. ISSN 0142-1123. Available from: https://doi.org/10.1016/j.ijfatigue.2005.09.020 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.