Communications - Scientific Letters of the University of Zilina 2021, 23(2):B117-B129 | DOI: 10.26552/com.C.2021.2.B117-B129

Fuzzy Logic Method for the Speed Estimation in All-Wheel Drive Electric Racing Vehicles

Angelo Bonfitto ORCID...1, Stefano Feraco ORCID...1, Marco Rossini1, Francesco Carlomagno1
1 Department of Mechanical and Aerospace Engineering - Mechatronics Laboratory, Politecnico di Torino, Torino, Italy

This paper presents a method for the vehicle speed estimation with a Fuzzy Logic based algorithm. The algorithm acquires the measurements of the yaw rate, steering angle, wheel velocities and exploits a set of five Fuzzy Logics dedicated to different driving conditions. The technique estimates the speed exploiting a weighted average of the contributions provided by the longitudinal acceleration and the credibility assigned by the Fuzzy Logics to the measurements of the wheels' speed. The method is experimentally evaluated on an all-wheel drive electric racing vehicle and is valid for the front and rear wheel drive configurations. The experimental validation is performed by comparing the obtained estimation with the result of computing the speed as the average of the linear velocity of the four wheels. A comparison to the integral of the vehicle acceleration over time is reported.

Keywords: automotive engineering; vehicle dynamics; fuzzy logic; electric vehicles; speed estimation

Received: May 19, 2020; Accepted: August 10, 2020; Prepublished online: January 26, 2021; Published: April 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bonfitto, A., Feraco, S., Rossini, M., & Carlomagno, F. (2021). Fuzzy Logic Method for the Speed Estimation in All-Wheel Drive Electric Racing Vehicles. Communications - Scientific Letters of the University of Zilina23(2), B117-129. doi: 10.26552/com.C.2021.2.B117-B129
Download citation

References

  1. KALA, R. On-road intelligent vehicles: motion planning for intelligent transportation systems. Butterworth-Heinemann, 2016. ISBN 978-0-12-803729-4.
  2. LI, J., CHENG, H., GUO, H., QIU, S. Survey on artificial intelligence for vehicles. Automotive Innovation [online]. 2018, 1(1), p. 2-14. ISSN 2096-4250, eISSN 2522-8765. Available from: https://doi.org/10.1007/s42154-018-0034-8 Go to original source...
  3. ELLIOTT, D., KEEN, W., MIAO, L. Recent advances in connected and automated vehicles. Journal of Traffic and Transportation Engineering [online]. 2018, 6(2), p. 109-131. ISSN 2095-7564. Available from: https://doi.org/10.1016/j.jtte.2018.09.005 Go to original source...
  4. YU, F., LI, D. F., CROLLA, D. A. Integrated vehicle dynamics control - State-of-the art review. In: IEEE Vehicle Power and Propulsion Conference: proceedings [online]. IEEE, 2008. ISSN 1938-8756, p. 1-6. Available from: https://doi.org/10.1109/VPPC.2008.4677809 Go to original source...
  5. RIND, S., REN, Y., JIANG, L. Traction motors and speed estimation techniques for sensorless control of electric vehicles: a review. In: 49th International Universities Power Engineering Conference UPEC: proceedings [online]. IEEE, 2014. p. 1-6. Available from: https://doi.org/10.1109/10.1109/UPEC.2014.6934646 Go to original source...
  6. BEVLY D. M., GERDES J. C., WILSON C., ZHANG, G. The use of GPS based velocity measurements for improved vehicle state estimation. In: American Control Conference ACC: proceedings [online]. IEEE, 2000. ISSN 0743-1619, ISBN 0-7803-5519-9. Available from: https://doi.org/10.1109/ACC.2000.878665 Go to original source...
  7. GUO, H., CHEN, H., LU, C., WANG, H., YANG, S. Vehicle dynamic state estimation: state of the art schemes and perspectives. IEEE/CAA Journal of Automatica Sinica [online]. 2018, 5(2), p. 418-431. ISSN 2329-9266, eISSN 2329-9274. Available from: https://doi.org/10.1109/JAS.2017.7510811 Go to original source...
  8. ZHAO, L., LIU, Z., CHEN H. Design of a nonlinear observer for vehicle velocity estimation and experiments. IEEE Transactions on Control Systems Technology [online]. 2011, 19(3), p. 664-672. ISSN 1063-6536, eISSN 1558-0865. Available from: https://doi.org/10.1109/TCST.2010.2043104 Go to original source...
  9. MOAVENI, B., ABAD, M. K. R., NASIRI, S. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter. Vehicle System Dynamics [online]. 2015, 53(10), p. 1373-1392. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2015.1038279 Go to original source...
  10. KLOMP, M., GAO, Y., BRUZELIUS, F. Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip. Vehicle System Dynamics [online]. 2014, 52, p. 172-188. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2014.887737 Go to original source...
  11. CHU, L., SHI, Y., ZHANG, Y., LIU, H., XU, M. Vehicle lateral and longitudinal velocity estimation based on adaptive Kalman filter. In: 3rd International Conference on Advanced Computer Theory and Engineering ICACTE: proceedings [online]. IEEE, 2010. Available from: https://doi.org/10.1109/ICACTE.2010.5579565 Go to original source...
  12. GAO, Y., FENG, Y., XIONG, L. Vehicle longitudinal velocity estimation with adaptive Kalman filter. In: FISITA 2012 World Automotive Congress: proceedings. Berlin, Heidelberg: Springer, 2013. p. 415-423. Go to original source...
  13. CHU, L., XHANG, Y., SHI, Y., XU, M., OU, Y. Vehicle lateral and longitudinal velocity estimation using coupled EKF and RLS methods. Applied Mechanic and Materials [online]. 2010, 29-32, p. 851-856. ISSN 1662-7482. Available from: https://doi.org/10.4028/www.scientific.net/AMM.29-32.851 Go to original source...
  14. TONG, L. An approach for vehicle state estimation using extended Kalman filter. In: International Computer Science Conference ICSC 2012: proceedings [online]. Vol. 326. Communications in Computer and Information Science. Berlin, Heidelberg: Springer, 2012. ISBN 978-3-642-34380-3, eISBN 978-3-642-34381-0, p. 56-63. Available from: https://doi.org/10.1007/978-3-642-34381-0_7 Go to original source...
  15. CHU, L., ZHANG, Y., SHI, Y., LIU, M., XU, M. Vehicle lateral and longitudinal velocity estimation based on unscented Kalman filter. In: 2nd International Conference on Education Technology and Computer: proceedings [online]. IEEE, 2010. ISSN 2155-1812. Available from: https://doi.org/10.1109/ICETC.2010.5529507 Go to original source...
  16. ZHAO, Z., CHEN, H., YANG, J., WU, X., YU, Z. Estimation of the vehicle speed in the driving mode for a hybrid electric car based on an unscented Kalman filter. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [online]. 2015, 229(4), p. 437-456. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1177/0954407014546918 Go to original source...
  17. BANERJEE, K., VAN DINH, T., LEVKOVA, L. Velocity estimation from monocular video for automotive applications using convolutional neural networks. In: IEEE Intelligent Vehicles Symposium IV: proceedings [online]. IEEE, 2017. Available from: https://doi.org/10.1109/IVS.2017.7995747 Go to original source...
  18. BONFITTO, A., FERACO, S., AMATI, N., TONOLI, A. Virtual sensing in high-performance vehicles with artificial intelligence. In: ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: proceedings [online]. Vol. 59216. American Society of Mechanical Engineers, 2019. ISBN 978-0-7918-5921-6, V003T01A005. Available from: https://doi.org/10.1115/DETC2019-97906 Go to original source...
  19. BONFITTO, A., FERACO, S., TONOLI, A., AMATI, N. Combined regression and classification artificial neural networks for sideslip angle estimation and road condition identification. Vehicle System Dynamics [online]. 2019, p. 1-22. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2019.1645860 Go to original source...
  20. BONFITTO, A., FERACO, S., TONOLI, A., AMATI, N., MONTI, F. Estimation accuracy and computational cost analysis of artificial neural networks for state of charge estimation in lithium batteries. Batteries [online]. 2019, 5(2), 47. eISSN 2313-0105. Available from: https://doi.org/10.3390/batteries5020047 Go to original source...
  21. ABDELGAWAD, N. E. A., EL MAHDY, A., GOMAA, W., SHOUKRY, A. Estimating vehicle speed on highway roads from smartphone sensors using deep learning models. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence ICTAI: proceedings [online]. Vol. 1. IEEE, 2019. p. 979-986. Available from: https://doi.org/10.1109/ICTAI.2019.00138
  22. RUTHERFORD, S. J., COLE, D. J. Modelling nonlinear vehicle dynamics with neural networks. International Journal of Vehicle Design [online]. 2010, 53(4), p. 260-287. ISSN 0143-3369, eISSN 1741-5314. Available from: https://doi.org/10.1504/IJVD.2010.034101 Go to original source...
  23. UZUNSOY, E. A brief review on fuzzy logic used in vehicle dynamics control. Journal of Innovative Science and Engineering (JISE). 2018, 2(1), p. 1-7. ISSN 2602-4217.
  24. IVANOV, V. A review of fuzzy methods in automotive engineering applications. European Transport Research Review [online]. 2015, 7(3), p. 1-10. ISSN 1867-0717, eISSN 1866-8887. Available from: https://doi.org/10.1007/s12544-015-0179-z Go to original source...
  25. JIN, L., CHEN, P., ZHANG, R., LING, M. Longitudinal velocity estimation based on fuzzy logic for electronic stability control system. Advances in Mechanical Engineering [online]. 2017, 9(5), p. 1-12. Available from: https://doi.org/10.1177/1687814017698662 Go to original source...
  26. BASSET, M., ZIMMER, C., GISSINGER, G. L. Fuzzy approach to the real time longitudinal velocity estimation of a FWD car in critical situations. Vehicle System Dynamics [online]. 1997, 27(5-6), p. 477-489. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423119708969343 Go to original source...
  27. GAO, X., YU, Z. XU, T. Longitudinal velocity estimation of electric vehicle with 4 in-wheel motors. Vehicle Dynamics and Simulation [online]. 2008, 01, 0605. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/2008-01-0605 Go to original source...
  28. DAISS, A., KIENCKE, U. Estimation of vehicle speed fuzzy-estimation in comparison with Kalman-filtering. In: IEEE Proceedings of International Conference on Control Applications: proceedings [online]. 1995. ISBN 0-7803-2550-8, p. 281-284. Available from: https://doi.org/10.1109/CCA.1995.555716 Go to original source...
  29. Electric Vehicles - Formula Student Rules 2018 [online]. Version: 1.1. 2018, p. 68-86. Available from: https://www.formulastudent.de/uploads/media/FS-Rules_2018_V1.1.pdf
  30. TAHAMI, F., FARHANGI, S., KAZEMI, R. A fuzzy logic direct yaw-moment control system for all-wheel-drive electric vehicles. Vehicle System Dynamics [online]. 2004, 41(3), p. 203-211. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1076/vesd.41.3.203.26510 Go to original source...
  31. SIVANANDAM, S. N., SUMATHI, S., DEEPA, S. N. Introduction to fuzzy logic using MATLAB. Vol. 1. Berlin: Springer, 2007. ISBN 978-3-540-35781-0. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.