Communications - Scientific Letters of the University of Zilina 2021, 23(3):E35-E45 | DOI: 10.26552/com.C.2021.3.E35-E45

RTK Kinematic Positioning Accuracy with Double Phase Difference of SIS GNSS Signals

Lucjan Setlak ORCID...1, Rafał Kowalik ORCID...1
1 Department of Avionics and Control Systems, Faculty of Aviation Division, Military University of Aviation, Deblin, Poland

The article presents results of verification of the kinematic measurements usefulness for precise real-time positioning RTK in the local reference system. These measurements allow for continuous RTK measurements in the event of temporary interruptions in radio or internet connections, which are the main reason for interruptions in RTK kinematic measurements and cause a decrease in the reliability and efficiency of this positioning method. Short interruptions communication are allowed during the loss of the key correction stream from the local RTK support network, so the global corrections obtained from the geostationary satellite are used. The aim of the article was to analyze the accuracy of measuring the position of moving objects. Practical conclusions were formulated according to the research subject, the presented mathematical models, the experiment and the analysis of the obtained results.

Keywords: real-time kinematic (RTK) positioning; double signal difference; GNSS system

Received: October 8, 2020; Accepted: November 4, 2020; Prepublished online: May 26, 2021; Published: July 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Setlak, L., & Kowalik, R. (2021). RTK Kinematic Positioning Accuracy with Double Phase Difference of SIS GNSS Signals. Communications - Scientific Letters of the University of Zilina23(3), E35-45. doi: 10.26552/com.C.2021.3.E35-E45
Download citation

References

  1. FENG, Y., WANG, J. Exploring GNSS RTK performance benefits with GPS and virtual galileo measurements. In: Institute of Navigation (ION) National Technical Meeting 2007: proceedings. 2007, p. 218-226.
  2. LANGLEY, R. B. The integrity of GPS. GPS World. 1999, 10(3), p. 60-63. ISSN 1048-5104.
  3. HIGGINS, M. GNSS, CORS and positioning infrastructure: business and the future. In: 6th FIG Regional Conference: proceedings. 2007.
  4. WANG, J. Stochastic modelling for RTK GPS/Glonass positioning. Navigation [online]. 2000, 46(4), p. 297-305. eISSN 2161-4296. Available from: https://doi.org/10.1002/j.2161-4296.1999.tb02416.x Go to original source...
  5. MIRSA, P., ENGE, P. Global positioning systems, signals, measurements and performance. Lincoln: Ganga Jamuna Press, 2004. ISBN 978-0970954428, p. 227-254.
  6. PRATT, M., BURKE, B., MISRA, P. Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data. In: ION GPS-98: proceedings [online]. 1999, p. 1-10. https://trid.trb.org/view/898384
  7. TEUNISSEN, P. J. G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy [online]. 1995, 70(1-2), p. 65-82. ISSN 0949-7714, eISSN 1432-1394. Available from: https://doi.org/10.1007/BF00863419. Go to original source...
  8. WANG, J., SATIRAPOD, C., RIZOS, C. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. Journal of Geodesy [online]. 2002, 76(2), p. 95-104. ISSN 0949-7714. Available from: https://doi.org/10.1007/s00190-001-0225-6. Go to original source...
  9. XU, G. GPS theory, algorithms and applications. 1. ed. Berlin Heidelberg: Springer-Verlag, 2003. ISBN 978-3-540-67812-0.
  10. GRZEGORZEWSKI, M. Results of a research predicting the position of an aircraft during approach and landing using the bessel function. Journal of Theoretical and Applied Mechanics. 2013, 51(4), p. 915-926. ISSN 1429-2955.
  11. WANG, Z., WU, Y., ZHANG, K., MENG, Y. Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization. Journal of Global Positioning Systems [online]. 2004, 4(1-2), p. 291-295. ISSN 1446-3156. Available from: https://doi.org/10.5081/jgps.4.1.291 Go to original source...
  12. WANNINGER, L., MAY, M. Carrier phase multipath calibration of GPS reference sites. In: 13th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000: proceedings. 2000, p. 132-144.
  13. ENGE, P., VAN DIERENDONCK, A. J. Wide area augmentation system [online]. In: Global Positioning System: theory and applications. Vol II. PARKINSON, B. W., ENGE, P., AXELRAD, P., SPILKER JR., J. J.(eds.). Washington D.C.: American Institute of Aeronautics and Astronautics, 1996. ISBN 978-1-56347-107-0, eISBN 978-1-60086-639-5, p. 117-142. Available from: https://doi.org/10.2514/5.9781600866395.0117.0142 Go to original source...
  14. SAUER, K. Integrated high precision kinematic positioning using GPS and EGNOS observations. PhD thesis. London, UK: Department of Civil and Environmental Engineering, Imperial College, 2003.
  15. SETLAK, L., KOWALIK, R. Examination of the unmanned aerial vehicle. ITM Web of Conferences [online]. 2019, 24, 01006. eISSN 2271-2097. Available from: https://doi.org/10.1051/itmconf/20192401006 Go to original source...
  16. SCHMITZ, WYBBENA, M., BOETTCHER, G. G. Test of phase centre variations of various GPS antennas and some results. GPS Solutions [online]. 2002, 6(1-2), p. 18-27. ISSN 1080-5370, eISSN 1521-1886. Available from: https://doi.org/10.1007/s10291-002-0008-4 Go to original source...
  17. SCHUELER, T., HEIN, G.W., EISSFELLER, B. On the use of numerical weather fields for troposphere delay estimation in wide area augmentation systems. In: GNSS 2000: proceedings. 2000, p. 1077-1091.
  18. TEFERLE, F. N., ORLIAC, E. J., BINGLEY, R. M. An assessment of bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solution [online]. 2007, 11, p. 205-213. ISSN 1080-5370, eISSN 1521-1886. Available from: https://doi.org/10.1007/s10291-006-0051-7 Go to original source...
  19. TSUJII, T., WANG, J., DAI, L., RIZOS, C., HARIGAE, M., INAGAKI, T., FUJIWARA, T. KATO, T. A technique for precise positioning of high altitude platforms system (HAPS) using a GPS ground reference network. In: 14th International Technical Meeting of the Satellite Division of the Institute of Navigation ION-GPS-2001: proceedigs, 2001, p. 1017-1026.
  20. SETLAK, L., KOWALIK, R., SMOLAK, M. Doppler delay in navigation signals received by GNSS receivers. In: WSEAS Transactions on Applied and Theoretical Mechanics, 3rd International Conference on Applied Physics, System Science and Computers APSAC 2018: proceedings. 2018. Lecture Notes in Electrical Engineering. Vol. 574, p. 3-8. Go to original source...
  21. RYAN, S. Y., DATY, A. G., BRAIN, T. D. Investigation and comparison of horizontal protection level and horizontal uncertainty level in FDE algorithms. In: ION GPS 1996: proceedings. 1996, p. 1607-1614.
  22. ZANDBERGEN, DINWIDDY, R. S., HAHN, J., BREEUWER, E., BLONSKI, D. GALILEO orbit selection. In: 17th International Technical Meeting of the Satellite Division of The Institute of Navigation ION GNSS 2004: proceedings. 2004, p. 616-623.
  23. WIESER, A., BRUNNER, F. K. An extended weitht model for GPS phase observations. Earth Planets Space [online]. 2000, 52, p. 777-782. ISSN 1880-5981. Available from: https://doi.org/10.1186/BF03352281 Go to original source...
  24. STURZA, M. A. Navigation system integrity monitoring using redundant measurements. Navigation [online]. 1989, 35(4). eISSN 2161-4296. Available from: https://doi.org/10.1002/j.2161-4296.1988.tb00975.x Go to original source...
  25. TEUNISSEN, P. J. G. Least-squares estimation of the integer GPS ambiguities. In: IAG General Meeting: proceedings. Section IV: Theory and Methodology. 1993.
  26. SETLAK, L., KOWALIK, R. Analysis, mathematical model and selected simulation research of the GNSS navigation receiver correlator. MATEC Web of Conferences [online]. 2018, 210, p. 1-11. eISSN 2261-236X. Available from: https://doi.org/10.1051/matecconf/201821005008. Go to original source...
  27. HUGENTOBLER, U., DACH, R., FRIDEZ, P., MEINDL, M. Bernese GPS software version 5.0. Bern: Astronomical Institute University of Bern. 2007.
  28. PARKINSON, B. W., SPILKER Jr., J. J. Global Positioning System: Theory and Applications. Vol. I. Progress in Astronautics and Aeronautics [online]. Washington DC: American Institute of Aeronautics and Astronautics, 1996. ISSN 978-1-56347-106-3, eISSN 978-1-60086-638-8. Available from: https://doi.org/10.2514/4.866388 Go to original source...
  29. PULLEN, S. P., PERVAN, B. S., PARKINSON, B. W. A new approach to GPS integrity monitoring using prior probability models and optimal threshold search. In: PLANS 94: proceedings. 1994.
  30. RAQUET, J. F. Development of a method for kinematic GPS carrier-phase ambiguity resolution using multiple reference receivers. PhD. Thesis. Calgary: University of Calgary, Department of Geomatics Engineering, 1998.
  31. REMONDI, B. W. NGS second generation ASCII and binary orbit formats and associated interpolation studies. In: 20th general assembly of the IUGG: proceedings. 1991.
  32. RICHERT, T., EL-SHEIMY, N. Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solutions [online]. 2007, 11(1), p. 11-19. ISSN 1080-5370, eISSN 1521-1886. Available from: https://doi.org/10.1007/s10291-006-0024-x Go to original source...
  33. ROTHACHER, M., SPRINGER, T. A., SCHAER, S., BEUTLER, G. Processing strategies for regional GPS networks. In: IAG General Assembly: proceedings. Springer, 1997. Go to original source...
  34. ENGE, P. K. The Global Positioning System: signals, measurements,and performance, International Journal of Wireless Information Networks [online]. 1994, 1(2), p. 83-105. ISSN 1068-9605, eISSN 1572-8129. Available from: https://doi.org/10.1007/BF02106512 Go to original source...
  35. ZHANG, W. Triple frequency cascading ambiguity resolution for modernized GPS and GALILEO. UCGE reports, No. 20228. Calgary: University of Calgary, Department of Geomatics Engineering, 2005.
  36. SETLAK, L., KOWALIK, R. Examination of multi-pulse rectifiers of PES systems used on airplanes compliant with the concept of electrified aircraft. Applied Sciences [online]. 2019, 9(8), 1520. Available from: https://doi.org/10.3390/app9081520 Go to original source...
  37. ZHANG, X. H., ANDERSON, O. B. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning. Journal of Geodesy [online]. 2006, 80(4), p. 171-176. ISSN 0949-7714, eISSN 1432-1394. Available from: https://doi.org/10.1007/s00190-006-0062-8 Go to original source...
  38. YOUSIF, H., EL-RABBANY, A. Assessment of several interpolation methods for precise GPS orbit. The Journal of Navigation [online]. 2007, 60, p. 443-455. ISSN 0373-4633, eISSN 1469-7785. Available from: https://doi.org/10.1017/S0373463307004250. Go to original source...
  39. SETLAK, L., KOWALIK, R. Analysis, mathematical model and simulation tests of the unmanned aerial vehicle control system. ITM Web of Conferences [online]. 2019, 24, 01005. eISSN 2271-2097. Available from: https://doi.org/10.1051/itmconf/20192401005 Go to original source...
  40. WYBBENA, G., SCHMITZ, M., MENGE, F., BODER, V., SEEBER, G. Automated absolute field calibration of GPS antennas in real time. In: International Technical Meeting of the Satellite Division of the Institute of Navigation ION-GPS-2000: proceedings. 2000, p. 2512-2522.
  41. WERNER, W., WINKEL, J. TCAR and MCAR options with GALILEO and GPS. In: ION GPS/GNSS 2003: proceedings. 2002.
  42. TEUNISSEN, P. J. G., DE JONGE, P. J., TIBERIOUS, C. C. J. M Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation [online]. 1997, 44(3), p. 373-383. eISSN 2161-4296. Available from: https://doi.org/10.1002/j.2161-4296.1997.tb02355.x Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.