Communications - Scientific Letters of the University of Zilina 2021, 23(3):B165-B177 | DOI: 10.26552/com.C.2021.3.B165-B177

A Data-Driven Method for Vehicle Speed Estimation

Angelo Bonfitto ORCID...1, Stefano Feraco ORCID...1
1 LIM - Laboratorio Interdisciplinare di Meccatronica, Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Torino, Italy

This paper presents a method based on Artificial Neural Networks for estimation of the vehicle speed. The technique exploits the combination of two tasks: a) speed estimation by means of regression neural networks dedicated to different road conditions (dry, wet and icy); b) identification of the road condition with a pattern recognition neural network. The training of the networks is conducted with experimental datasets recorded during the driving sessions performed with a vehicle on different tracks. The effectiveness of the proposed approach is validated experimentally on the same car by deploying the algorithm on a dSPACE computing platform. The estimation accuracy is evaluated by comparing the obtained results to the measurement of an optical sensor installed on the vehicle and to the output of another estimation method, based on the mean value of velocity of the four wheels.

Keywords: vehicle speed; artificial neural networks; estimation; regression; classification; road identification

Received: October 15, 2020; Accepted: November 25, 2020; Prepublished online: April 7, 2021; Published: July 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bonfitto, A., & Feraco, S. (2021). A Data-Driven Method for Vehicle Speed Estimation. Communications - Scientific Letters of the University of Zilina23(3), B165-177. doi: 10.26552/com.C.2021.3.B165-B177
Download citation

References

  1. OKUDA, R., KAJIWARA, Y., TERASHIMA, K. A survey of technical trend of ADAS and autonomous driving. In: VLSI Technology, Systems and Application VLSI-TSA: proceedings [online]. IEEE. 2014. ISBN 978-1-4799-2776-0. Available from: https://doi.org/10.1109/VLSI-DAT.2014.6834940 Go to original source...
  2. SHIBAHATA, Y., SHIMADA, K., TOMARI, T. Improvement of vehicle manoeuvreability by direct yaw moment control. Vehicle System Dynamics [online]. 1993, 22(5-6), p. 465-481. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423119308969044 Go to original source...
  3. LUCIANI, S., BONFITTO, A., AMATI, N., TONOLI, A. Model predictive control for comfort optimization in assisted and driverless vehicles. Advances in Mechanical Engineering [online]. 2020, 12(11). ISSN 1687-8140, eISSN 1687-8140. Available from: https://doi.org/10.1177/1687814020974532 Go to original source...
  4. FODOR, M., YESTER, J., HROVAT, D. Active control of vehicle dynamics. In: 17th Digital Avionics Systems Conference DASC: proceedings [online]. The AIAA/IEEE/SAE. Vol. 2. 1998. ISBN 0-7803-5086-3, p. I14/1-I14/8. Available from: https://doi.org/10.1109/DASC.1998.739865 Go to original source...
  5. YIM, Y. U., OH, S. Y. Modeling of vehicle dynamics from real vehicle measurements using a neural network with two-stage hybrid learning for accurate long-term prediction. IEEE Transactions on Vehicular Technology [online]. 2004, 53(4), p. 1076-1084. ISSN 0018-9545. Available from: https://doi.org/10.1109/TVT.2004.830145 Go to original source...
  6. BONFITTO, A., FERACO, S., TONOLI, A., AMATI, N. Combined regression and classification artificial neural networks for sideslip angle estimation and road condition identification. Vehicle System Dynamics [online]. 2019, 58(11), p. 1766-1787. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2019.1645860 Go to original source...
  7. CIROVIC, V., ALEKSENDRIC, D., SMILJANIC, D. Longitudinal wheel slip control using dynamic neural networks. Mechatronics [online]. 2013, 23(1), p. 135-146. ISSN 0957-4158. Available from: https://doi.org/10.1016/j.mechatronics.2012.11.007 Go to original source...
  8. MANNING, W. J., CROLLA, D. A. A review of yaw rate and sideslip controllers for passenger vehicles. Transactions of the Institute of Measurement and Control [online]. 2007, 29(2), p. 117-135. ISSN 0142-3312, eISSN 1477-0369. Available from: https://doi.org/10.1177/0142331207072989 Go to original source...
  9. BEVLY, D. M., GERDES, J. C., WILSON, C., ZHANG, G. The use of GPS based velocity measurements for improved vehicle state estimation. In: 2000 American Control Conference ACC: proceedings [online]. IEEE. 2000. ISSN 0743-1619, ISBN 7803-5519-9. Available from: https://doi.org/10.1109/ACC.2000.878665 Go to original source...
  10. JANG, J., SUNG, S., LEE, Y. J. Improvement of differential GPS performance using range measurements between satellites. International Journal of Aeronautical and Space Sciences [online]. 2020, 21(1), p. 201-209. ISSN 2093-274X, eISSN 2093-2480. Available from: https://doi.org/10.1007/s42405-019-00198-x Go to original source...
  11. SOLOMON, P. D., WANG, J., RIZOS, C. Latency determination and compensation in real-time GNSS/INS integrated navigation systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2011 ISPRS Workshop: proceedings [online]. Vol. XXXVIII-1/C22. 2011. p. 303-307. Available from: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-303-2011
  12. WANG, Z., HAMEDI, M. YOUNG, S. Methodology for calculating latency of GPS probe data. Transportation Research Record: Journal of the Transportation Research Board [online]. 2017, 2645(1), p. 76-85. ISSN 0361-1981, eISSN 2169-4052. Available from: https://doi.org/10.3141/2645-09 Go to original source...
  13. KO, S. Y., KO, J. W., LEE, S. M., CHEON, J. S., KIM, H. S. Vehicle velocity estimation using effective inertia for an in-wheel electric vehicle. International Journal of Automotive Technology [online]. 2014, 15(5), p. 815-821. ISSN 1229-9138, eISSN 1976-3832. Available from: https://doi.org/10.1007/s12239-014-0085-8 Go to original source...
  14. HASHEMI, E., KHOSRAVANI, S., KHAJEPOUR, A., KASAIEZADEH, A., CHEN, S. K., LITKOUHI, B. Longitudinal vehicle state estimation using nonlinear and parameter-varying observers. Mechatronics [online]. 2017, 43, p. 28-39. ISSN 0957-4158. Available from: https://doi.org/10.1016/j.mechatronics.2017.02.004 Go to original source...
  15. KLOMP, M., GAO, Y., BRUZELIUS, F. Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip. Vehicle System Dynamics [online]. 2014, 52(sup1), p. 172-188. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2014.887737 Go to original source...
  16. CHU, L., SHI, Y., ZHANG, Y., LIU, H., XU, M. Vehicle lateral and longitudinal velocity estimation based on adaptive Kalman filter. In: 3rd International Conference on Advanced Computer Theory and Engineering ICACTE: proceedings [online]. IEEE. 2010. Available from: https://doi.org/10.1109/ICACTE.2010.5579565 Go to original source...
  17. CHU, L., XHANG, Y., SHI, Y., XU, M., OU, Y. Vehicle lateral and longitudinal velocity estimation using coupled EKF and RLS methods. Applied Mechanic and Materials [online]. 2010, 29-32, p. 851-856. ISSN 1662-7482. Available from: https://doi.org/10.4028/www.scientific.net/AMM.29-32.851 Go to original source...
  18. CHU, L., ZHANG, Y., SHI, Y., XU, M., LIU, M. Vehicle lateral and longitudinal velocity estimation based on unscented Kalman filter. In: 2nd International Conference on Education Technology and Computer: proceedings [online]. IEEE. 2010. ISSN 2155-1812. Available from: https://doi.org/10.1109/ICETC.2010.5529507 Go to original source...
  19. MOAVENI, B., ABAD, M. K. R., NASIRI, S. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter. Vehicle System Dynamics [online]. 2015, 53(10), p. 1373-1392. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423114.2015.1038279 Go to original source...
  20. ZHAO, L., LIU, Z., CHEN, H. Design of a nonlinear observer for vehicle velocity estimation and experiments. IEEE Transactions on Control Systems Technology [online]. 2011, 19(3), p. 664-672. ISSN 1063-6536, eISSN 1558-0865. Available from: https://doi.org/10.1109/TCST.2010.2043104 Go to original source...
  21. GAO, X., YU, Z., XU, T. Longitudinal velocity estimation of electric vehicle with 4 in-wheel motors. In: SAE World Congress and Exhibition Vehicle Dynamics and Simulation: proceedings [online]. USA: SAE International. 2008. ISSN 0148-7191, eISSN 2688-3627, 2008-01-0605. Available from: https://doi.org/10.4271/2008-01-0605 Go to original source...
  22. JIN, C., SHAO, L., LEX, C., EICHBERGER, A. Vehicle side slip angle observation with road friction adaptation. IFAC PapersOnLine [online]. 2017, 50(1), p. 3406-3411. ISSN 2405-8963. Available from: https://doi.org/10.1016/j.ifacol.2017.08.593 Go to original source...
  23. BASSET, M., ZIMMER, C., GISSINGER, G. L. Fuzzy approach to the real time longitudinal velocity estimation of a FWD car in critical situations. Vehicle System Dynamics [online]. 1997, 27, p. 477-489. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423119708969343 Go to original source...
  24. JIN, L., CHEN, P., ZHANG, R. AND LING, M. Longitudinal velocity estimation based on fuzzy logic for electronic stability control system. Advances in Mechanical Engineering [online]. 2017, 9(5), p. 1-12. ISSN 1687-8140, eISSN 1687-8140. Available from: https://doi.org/10.1177/1687814017698662 Go to original source...
  25. BONFITTO, A., FERACO, S., ROSSINI, M., CARLOMAGNO, F., Fuzzy logic method for the speed estimation in all-wheel drive electric racing vehicles. Communications-Scientific Letters of the University of Zilina [online].2021, in press. ISSN 1335-4205, eISSN 2585-7878. Go to original source...
  26. BONFITTO, A., FERACO, S., AMATI, N., TONOLI, A. Virtual sensing in high-performance vehicles with artificial intelligence. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC - CIE 2019: proceedings. Vol. 59216. American Society of Mechanical Engineers, 2019. p. V003T01A005.
  27. BONFITTO, A., FERACO, S., TONOLI, A., AMATI, N., MONTI, F. Estimation accuracy and computational cost analysis of artificial neural networks for state of charge estimation in lithium batteries. Batteries [online]. 2019, 5(2), 47. eISSN 2313-0105. Available from: https://doi.org/10.3390/batteries5020047 Go to original source...
  28. PROKHOROV, D. Neural networks in automotive applications. In: Computational intelligence in automotive applications. PROKHOROV, D. (ed.). Berlin, Heidelberg: Springer, 2008. ISBN 978-3-540-79257-4, p. 101-123. Go to original source...
  29. MARKEVICIUS, V., NAVIKAS, D., IDZKOWSKI, A., ANDRIUKAITIS, D., VALINEVICIUS, A., ZILYS, M. Practical methods for vehicle speed estimation using a microprocessor-embedded system with AMR sensors. Sensors [online]. 2018, 18, 2225. eISSN 1424-8220. Available from: https://doi.org/10.3390/s18072225 Go to original source...
  30. WANG, B., GUAN, H., LU, P., ZHANG, A. Road surface condition identification approach based on road characteristic value. Journal of Terramechanics [online]. 2014, 56, p. 103-117. ISSN 0022-4898. Available from: https://doi.org/10.1016/j.jterra.2014.09.001 Go to original source...
  31. LIU, C. S., HUEI, P. Road friction coefficient estimation for vehicle path prediction. Vehicle System Dynamics [online]. 1996, 25(sup1), p. 413-425. ISSN 0042-3114, eISSN 1744-5159. Available from: https://doi.org/10.1080/00423119608969210 Go to original source...
  32. AGUILAR, J. J. C., CARRILLO, J. A. C., FERNANDEZ, A. J. G., ACOSTA, E. C. Robust road condition detection system using in-vehicle standard sensors. Sensors [online]. 2015, 15(12), p. 32056-32078. eISSN 1424-8220. Available from: https://doi.org/10.3390/s151229908 Go to original source...
  33. NGWANGWA, H. M., HEYNS, P. S. Application of an ANN-based methodology for road surface condition identification on mining vehicles and roads. Journal of Terramechanics [online]. 2014, 53, p. 59-74. ISSN 0022-4898. Available from: https://doi.org/10.1016/j.jterra.2014.03.006 Go to original source...
  34. VIIKARI, V. V., VARPULA, T., KANTANEN, M. Road condition recognition using 24-GHz automotive radar. IEEE Transactions on Intelligent Transportation Systems [online]. 2009, 10, p. 639-648. ISSN 1558-0016. Available from: https://doi.org/10.1109/TITS.2009.2026307 Go to original source...
  35. ASUZU, P., THOMPSON, C. Road condition identification from millimeter-wave radar backscatter measurements. IEEE Radar Conference RadarConf18: proceedings [online]. IEEE. 2018. ISSN 2375-5318. Available from: https://doi.org/10.1109/RADAR.2018.8378522 Go to original source...
  36. SHEELA, K. G., DEEPA, S. N. Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering [online]. 2013, 2013, 425740. ISSN 1024-123X, eISSN 1563-5147. Available from: https://doi.org/10.1155/2013/425740 Go to original source...
  37. GOODFELLOW, I., BENGIO Y., COURVILLE, A. Deep learning. Boston, USA: The MIT press, 2016. ISBN 978-0262035613.
  38. OU, G., MURPHEY, Y. L. Multi-class pattern classification using neural networks. Pattern Recognition [online]. 2007, 40(1), p. 4-18. ISSN 0031-3203. Available from: https://doi.org/10.1016/j.patcog.2006.04.041 Go to original source...
  39. BONFITTO, A., TONOLI, A., FERACO, S., ZENERINO, E. C., GALLUZZI, R. Pattern recognition neural classifier for fall detection in rock climbing. Proceedings of the Institution of Mechanical Engineers Part P Journal of Sports Engineering and Technology [online]. 2019, 233(4), p. 478-488. ISSN 1754-3371, eISSN 1754-338X. Available from: https://doi.org/10.1177/1754337119850927 Go to original source...
  40. WELCH, P. The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics [online]. 1967, 15(2), p. 70-73. ISSN 0018-9278, eISSN 1558-2582. Available from: https://doi.org/10.1109/TAU.1967.1161901 Go to original source...
  41. RENAUDIN, V., SUSI, M., LACHAPELLE, G. Step length estimation using handheld inertial sensors. Sensors [online]. 2012, 12, p. 8507-8525. eISSN 1424-8220. Available from: https://doi.org/10.3390/s120708507 Go to original source...
  42. MANORANJAN, D., HUAN, L. Feature selection for classification. Intelligent Data Analysis [online]. 1997, 1(1-4), p. 131-156. ISSN 1088-467X. Available from: https://doi.org/10.1016/S1088-467X(97)00008-5 Go to original source...
  43. JANECEK, A., GANSTERER, W., DEMEL, M., ECKER, G. On the relationship between feature selection and classification accuracy. Journal of Machine Learning Research: Workshop and Conference Proceedings of Machine Learning Research. 2008, 4, p. 90-105. ISSN 1938-7228.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.