Communications - Scientific Letters of the University of Zilina 2021, 23(4):E68-E75 | DOI: 10.26552/com.C.2021.4.E68-E75

Two Objective Public Service System Design Problem

Jaroslav Janáèek ORCID...1, Michal Koháni ORCID...1, Dobroslav Grygar ORCID...1, René Fabricius ORCID...1
Faculty of Management Science and Informatics, University of Zilina, Zilina, Slovakia

The  public  service  system  serves  population  spread  over  a  geographical  area from a given number of service centers. One of the possible approaches to  the  problem  with  two  or  more  simultaneously  applied  contradicting  objectives  is  determination  of  the  so-called  Pareto  front,  i.e.  set  of  all  the  feasible non-dominated solutions. The Pareto front determination represents a crucial computational deal, when a large public service system is designed using  an  exact  method.  This  process  complexity  evoked  an  idea  to  use  an  evolutionary  metaheuristic,  which  can  build  up  a  set  of  non-dominated  solution  continuously  in  the  form  of  an  elite  set.  Nevertheless,  the  latter  approach does not assure that the resulting set of solutions represents the true Pareto front of the multi-objective problem solutions. Within this paper, authors  deal  with  both  approaches  to  evaluate  the  difference  between  the  exact and heuristic approaches.

Keywords: service system; multi-objective; Pareto front; exact approach; genetic algorithm

Received: December 17, 2020; Accepted: February 15, 2021; Prepublished online: September 21, 2021; Published: October 1, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Janáèek, J., Koháni, M., Grygar, D., & Fabricius, R. (2021). Two Objective Public Service System Design Problem. Communications - Scientific Letters of the University of Zilina23(4), E68-75. doi: 10.26552/com.C.2021.4.E68-E75
Download citation

References

  1. BROTCORNE, L., LAPORTE, G., SEMET, F. Ambulance location and relocation models. European Journal of Operational Research [online]. 2003, 147(3), p. 451-463. ISSN 0377-2217. Available from: https://doi.org/10.1016/S0377-2217(02)00364-8 Go to original source...
  2. DOERNER, K. F., GUTJAHR, W. J., HARTL, R. F., KARALL, M., REIMANN, M. Heuristic Solution of an Extended Double-Coverage Ambulance Location Problem for Austria. Central European Journal of Operations Research. 2005, 13(4), p. 325-340. ISSN 1435-246X, eISSN 1613-9178.
  3. JANOSIKOVA, L. Emergency medical service planning. Communications - Scientific Letters of the University of Zilina [online]. 2007, 9(2), p. 64-68. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/1133 Go to original source...
  4. GARCIA, S., LABBE, M., MARIN, A. Solving large p-median problems with a radius formulation. INFORMS Journal on Computing [online]. 2011, 23(4), p. 546-556. ISSN 1091-9856, eISSN 1526-5528. Available from: https://doi.org/10.1287/ijoc.1100.0418 Go to original source...
  5. KVET, M. Computational study of radial approach to public service system design with generalized utility. In: 10th International IEEE Conference Digital Technologies 2014: proceedings. 2014. p. 198-208. Go to original source...
  6. KVET, M. Advanced radial approach to resource location problems. In: Studies in computational intelligence: developments and advances in intelligent systems and applications [online]. ROCHA, A., REIS, L. P. (eds.). Springer, 2018. ISBN 978-3-319-58965-7, eISBN 978-3-319-58965-7, p. 29-48. Available from: https://doi.org/10.1007/978-3-319-58965-7 Go to original source...
  7. OGRYCZAK, W., SLIWINSKI, T. On direct methods for lexicographic min-max optimization. In: International Conference on Computational Science and Its Applications ICCSA 2006: proceedings [online]. Lecture Notes in Computer Science. Vol. 3982. Berlin, Heidelberg: Springer, 2006. ISBN 978-3-540-34075-1, eISBN 978-3-540-34076-8, p. 802-811. Available from: https://doi.org/10.1007/11751595_85 Go to original source...
  8. JANACEK, J., KVET, M. Public service system design with disutility relevance estimation. In: International Conference on Mathematical Methods in Economics 2013: proceedings. 2013. p. 332-337.
  9. ELLOUMI, S., LABBE, M., POCHET, Y. A new formulation and resolution method for the p-center problem. INFORMS Journal on Computing [online]. 2004, 16, p. 84-94. ISSN 1091-9856, eISSN 1526-5528. Available from: https://doi.org/10.1287/ijoc.1030.0028 Go to original source...
  10. SAYAH, D., IRNICH, S. A new compact formulation for the discrete p-dispersion problem. European Journal of Operational Research [online]. 2016, 256(1), p. 62-67. ISSN 0377-2217. Available from: https://doi.org/10.1016/j.ejor.2016.06.036 Go to original source...
  11. KVET, M., JANACEK, J. Price of fairness in public service system design. In: International Conference on Mathematical Methods in Economics 2014: proceedings. 2014. p. 554-559.
  12. KVET, M., JANACEK, J. Lexicographic fair design of robust emergency service system. In: International Conference on Mathematical Methods in Economics 2016: proceedings. 2016. p. 495-500
  13. BERTSIMAS, D., FARIAS, V. F., TRICHAKIS, N. The price of fairness. Operations Research [online]. 2011, 59(1), p. 17-31. ISSN 0030-364X, eISSN 1526-5463. Available from: https://doi.org/10.1287/opre.1100.0865 Go to original source...
  14. JANOSIKOVA, L., GABRISOVA, L., JEZEK, B., Load balancing location of emergency medical service stations. E+M Ekonomie a Management / E+M Economics and Management [online]. 2015, 18(3), p. 30-40. ISSN 1212-3609, eISSN 2336-5064. Available from: http://dx.doi.org/10.15240/tul/001/2015-3-003 Go to original source...
  15. ARROYO, J. E. C., DOS SANTOS, P. M., SOARES, M. S., SANTOS, A, G. A multi-objective genetic algorithm with path relinking for the p-median problem. In: Ibero-American Conference on Artificial Intelligence IBERAMIA 2010: proceedings [online]. Lecture Notes in Computer Science. Vol. 6433. Berlin, Heidelberg: Springer, 2010. ISBN 978-3-642-16951-9, eISBN 978-3-642-16952-6, p. 70 - 79. Available from: https://doi.org/10.1007/978-3-642-16952-6_8 Go to original source...
  16. JANACEK, J. Public service system design with fuzzy parameters of perceived utility. In: Central European Journal of Operations Research [online]. 2015, 23(3), p. 595-606. ISSN 1435-246X, eISSN 1613-9178. Available from: https://doi.org/10.1007/s10100-014-0370-7 Go to original source...
  17. KVET, M., JANACEK, J. Iterative approaches to design of robust emergency system. In: 2017 IEEE International Conference on Service Operations and Logistics and Informatics SOLI: proceedings. 2017. ISBN 978-1-5386- 0949-1, p. 13-16. Go to original source...
  18. RYBICKOVA, A., BURKETOVA, A., MOCKOVA, D. Solution to the location-routing problem using a genetic algorithm. In: 2016 Smart Cities Symposium Prague SCSP: proceedings [online]. IEEE. 2016. ISBN 978-1-5090- 1116-2, p. 1-6. Available from: https://doi.org/10.1109/SCSP.2016.7501016 Go to original source...
  19. RYBICKOVA, A., MOCKOVA, D., TEICHMANN, D. Genetic algorithm for the continuous location-routing problem. Neural Network World [online]. 2019, 29, p. 173-187. ISSN 1210-0552, eISSN 2336-4335. Available from: https://doi.org/10.14311/NNW.2019.29.012 Go to original source...
  20. GRYGAR, D., FABRICIUS, R. An efficient adjustment of genetic algorithm for pareto front determination. Transportation Research Procedia [online]. 2019, 40, p. 1335-1342. ISSN 2352-1465. Available from: https://doi.org/10.1016/j.trpro.2019.07.185 Go to original source...
  21. REEVES, C. R. Genetic algorithms. In: Handbook of Metaheuristics. 2. ed. GENDREAU, M., POTVIN, J. Y. (eds.). New York, Dordrecht, Heidelberg, London: Springer, 2010. ISBN 978-3-319-91086-4.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.