Communications - Scientific Letters of the University of Zilina 2022, 24(2):B135-B147 | DOI: 10.26552/com.C.2022.2.B135-B147

The Impact of Road Irregularities on the Motion of a Motor Vehicle during Acceleration

Jarosław Zalewski ORCID...1
Warsaw University of Technology, Warsaw, Poland

In this paper the selected results concerning the analysis of the phenomena occurring between the road and the wheels of a motor vehicle have been presented. The analysis was prepared for the simulation of the acceleration maneuver with the 100 % (full) throttle along the road with various conditions. The aim of this paper was to analyze whether both the full throttle and the road conditions may affect the forces occurring in the contact area between the wheels of the vehicle and the road, regarding the road conditions and the rear wheel drive of the analyzed vehicle's model.

Keywords: contact forces between a wheel and a road, coefficient of adhesion

Received: July 22, 2021; Accepted: November 16, 2021; Prepublished online: January 21, 2022; Published: April 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zalewski, J. (2022). The Impact of Road Irregularities on the Motion of a Motor Vehicle during Acceleration. Communications - Scientific Letters of the University of Zilina24(2), B135-147. doi: 10.26552/com.C.2022.2.B135-B147
Download citation

References

  1. AGOSTINACCHIO, M., CIAMPA, D., OLITA, S. The vibrations induced by surface irregularities in road pavements - a Matlab® approach. European Transport Research Review [online]. 2014, 6, p. 267-275. ISSN 1866-8887. Available from: https://doi.org/10.1007/s12544-013-0127-8 Go to original source...
  2. BUZEMAN JEWKES, D. Vehicle acceleration and compartment intrusion for far-sided occupants v. near-sided occupants in frontal offset collisions. SAE Technical Paper Series [online]. 2003, 2003-01-0159. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/2003-01-0159 Go to original source...
  3. GRAKOVSKI, A., PILIPOVECS, A. Dynamics of interaction between the road surface and vehicle's wheel in fibre-optic system for automatic weighing in motion of transport. Procedia Engineering [online]. 2017, 178, p. 5-12. ISSN 1877-7058. Available from: https://doi.org/10.1016/j.proeng.2017.01.052 Go to original source...
  4. POKORSKI, J., SAR, H., RENSKI, A., Influence of exploitation conditions on anti-skid properties of tyres. Transport [online]. 2019, 34(4), p. 415-424. ISSN 1648-4142. Available from: https://doi.org/10.3846/transport.2019.10426 Go to original source...
  5. CHEN, CH., JIA, Y., WANG, Y., SHU, M. Non-linear velocity observer for vehicles with tyre-road friction estimation. International Journal of Systems Science [online]. 2018, 49(7), p. 1403-1418. Available from: https://doi.org/10.1080/00207721.2018.1454533 Go to original source...
  6. GIM, G., NIKRAVESH, P. E. An analytical model of pneumatic tire for vehicle dynamic simulations. Part I. International Journal of Vehicle Design. 1991, 11(6), p. 589-618. ISSN 0143-3369, eISSN 1741-5314.
  7. PROCHOWSKI, L., KOCHANEK, H., GIDLEWSKI, M., PUSTY, T. Analysis of the seasonal and regional variations in the accident hazard in Poland. In: Conference Urban Transport XXIII: proceedings [online]. 2017. Vol. 176. p. 441-452. Available from: https://doi.org/10.2495/UT170381 Go to original source...
  8. RILL, G. Road vehicle dynamics: fundamentals and modeling. USA, CRC Press: 2011. ISBN 9781439838983. Go to original source...
  9. WALUS, K. J. Driver's strategy and braking distance in winter.: In: 21st International Scientific Conference Transport Means 2017: proceedings. 2017. Part 2. p. 505-509.
  10. WALUS, K. J., OLSZEWSKI Z. Analysis of tire-road contact under winter conditions. In: World Congress on Engineering WCE 2011: proceedings. 2011. Vol III.
  11. ZALEWSKI, J.. Impact of the selected motion parameters on some certain maintenance features of a motor vehicle / Wplyw wybranych parametrow ruchu na niektore cechy eksploatacyjne samochodu (in Polish). Poland: ITEE-PIB, 2018. ISBN 9788377895160.
  12. ZHAO, J., ZHANG, J., ZHU, B. Development and verification of the tire/road friction estimation algorithm for antilock braking system. Mathematical Problems in Engineering [online]. 2014, 2014, 786492. ISSN 1024-123X, eISSN 1563-5147. Available from: https://doi.org/10.1155/2014/786492 Go to original source...
  13. MUCKA, P. International roughness index thresholds based on whole-body vibration in passenger cars. Transportation Research Record Journal of the Transportation Research Board [online]. 2020, 2675(3), p. 1-16. ISSN 2169-4052. Available from: https://doi.org/10.1177/0361198120960475 Go to original source...
  14. GONZALEZ, A., O'BRIEN, E. J., LI, Y.-Y., CASHELL, K. The use of vehicle acceleration measurements to estimate road roughness. Vehicle System Dynamics [online]. 2006, 46, p. 483-499. ISSN 1877-7058. Available from: https://doi.org/10.1016/j.proeng.2017.01.052 Go to original source...
  15. LEVULYTE, L., ZURAULIS, V., SOKOLOVSKIJ, E. The impact of road roughness on the duration of contact between a vehicle wheel and road surface. Transport [online]. 2014, 29(4), p. 431-439. ISSN 1648-4142. Available from: https://doi.org/10.3846/16484142.2014.984330 Go to original source...
  16. SOKOLOVSKIJ, E., PRENTKOVSKIS, O., PECELIUNAS, R., KINDERYTE-POSKIENE, J. Investigation of automobile wheel impact on the road border. The Baltic Journal of Road and Bridge Engineering [online]. 2007, 2(3), p. 119-123. ISSN 1822-427X. Available from: https://bjrbe-journals.rtu.lv/article/view/1822-427X.2007.3.119-123
  17. KABANOVS, A., GARMORY, A., PASSMORE, M., GAYLARD, A. Investigation into the dynamics of wheel spray released from a rotating tyre of a simplified vehicle model. Journal of Wind Engineering and Industrial Aerodynamics [online]. 2019, 184, p. 228-246. ISSN 0167-6105, eISSN 1877-7058. Available from: https://doi.org/10.1016/j.jweia.2018.11.024 Go to original source...
  18. STRAZOVEC, P., GERLICI, J., LACK, T., HARUSINEC, J. Innovative solution for experimental research of phenomena resulting from the wheel and rail rolling. Transportation Research Procedia [online]. 2019, 40, p. 906-911. ISSN 2352-1465. Available from: https://doi.org/10.1016/j.trpro.2019.07.127 Go to original source...
  19. MIROSLAW, T., SZLAGOWSKI, J., ZAWADZKI, A., ZEBROWSKI, Z. Simulation model of an off-road four-wheel-driven electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering [online]. 2019, 233, p. 1248-1262. ISSN 0959-6518. Available from: https://doi.org/10.1177/0959651818822399 Go to original source...
  20. ZALEWSKI, J. On a certain approach towards the U-turn of a motor vehicle maneuver. In: Research and the future of telematics, communications in computer and information science [online]. Vol. 1289. MIKULSKI, J. (ed.). Germany, Springer: 2020. ISBN 978-3-030-59269-1, p. 354-367. Go to original source...
  21. GENTA, G. Motor vehicle dynamics. Modeling and simulation. World Scientific Publishing Company, 1997. ISBN 978-9810229115. Go to original source...
  22. GILLESPIE, T. D. Fundamentals of vehicle dynamics. Warrendale: Society of Automotive Engineers, 1992. ISBN 978-1-56091-199-9. Go to original source...
  23. JAZAR, R. N. Vehicle dynamics: theory and application [online]. Boston, MA: Springer, 2008. ISBN 978-0-387-74243-4, eISBN 978-0-387-74244-1. Available from: https://doi.org/10.1007/978-0-387-74244-1 Go to original source...
  24. MEYWERK, M. Vehicle dynamics. United Kingdom, Wiley: 2015, ISBN 9781118971352.
  25. PROCHOWSKI, L. Mechanics of motion / Mechanika ruchu (in Polish). Warsaw: WKL, 2016. ISBN 978-83-206-1957-7.
  26. VENTURE, G., BODSON, P., GAUTIER, M., KHALIL, W. Identification of the dynamic parameters of a car. SAE Technical Paper Series [online]. 2003, 2003-01-1283. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/2003-01-1283 Go to original source...
  27. EDDIE, R. Ice, ABS and temperature. SAE Technical Paper Series [online]. 1994, 940726. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/940724 Go to original source...
  28. HAUDUM, M., EDELMANN, J., PLOCHL, M., HOLL M. Vehicle side-slip angle estimation on a banked and low-friction road. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering [online]. 2017, 232(12), p. 1584-1596. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1177/0954407017732852 Go to original source...
  29. PEEIE, M. H. B., OGINO, H., OSHINOYA, Y. Skid control of a small electric vehicle with two in-wheel motors: simulation model of ABS and regenerative brake control. International Journal of Crashworthiness [online]. 2016, 21(5), p. 396-406. ISSN 1358-8265, eISSN 1754-2111. Available from: https://doi.org/10.1080/13588265.2016.1147731 Go to original source...
  30. ZHU, J. J., KHAJEPOUR, A., SPIKE, J., CHEN, S.-K., MOSHCHUK, N. An integrated vehicle velocity and tyre-road friction estimation based on a half-car model. International Journal of Vehicle Autonomous Systems [online]. 2016, 13(2), p. 114-139. ISSN 1471-0226, eISSN 1741-5306. Available from: https://doi.org/10.1504/IJVAS.2016.078763 Go to original source...
  31. PATEL, N., EDWARDS, C., SPURGEON, S. K. Tyre-road friction estimation - a comparative study. Journal of Automobile Engineering [online]. 2008, 222(D12), p. 2337-2352. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1243/09544070JAUTO859 Go to original source...
  32. PAUL, D., VELENIS, E., HUMBERT, F., CAO, D., DOBO, T., HEGARTY, S. Tyre-road friction μ-estimation based on braking force distribution. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering [online]. 2018, 233(8), p. 2030-2047. ISSN 0954-4070, eISSN 2041-2991. Available from: https://doi.org/10.1177/0954407018765277 Go to original source...
  33. VARAT, M. S., KERKHOFF, J. F., HUSHER, S. E., ARMSTRONG, C. D., SHUMAN, K. F. The analysis and determination of tire-roadway frictional drag. SAE Technical Paper Series [online]. 2003, 2003-01-0887. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/2003-01-0887 Go to original source...
  34. KLEIN-PASTE, A., SINHA, N. K. Comparison between rubber-ice and sand-ice friction and the effect of loose snow contamination. Tribology International [online]. 2010, 43(5-6), p. 1145-1150. ISSN 0301-679X. Available from: https://doi.org/10.1016/j.triboint.2009.12.037 Go to original source...
  35. MARTIN, D. P., SCHAEFER, G. F., Tire-road friction in winter conditions for accident reconstruction. SAE Technical Paper Series [online]. 1996, 960657. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/960657 Go to original source...
  36. NAVIN, F., MACNABB, M., NICOLLETTI, C. Vehicle traction experiments on snow and ice. SAE Technical Paper Series [online]. 1996, 960652. ISSN 0148-7191, eISSN 2688-3627. Available from: https://doi.org/10.4271/960652 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.