Communications - Scientific Letters of the University of Zilina 2022, 24(2):C33-C42 | DOI: 10.26552/com.C.2022.2.C33-C42

Path Planning Algorithm Based on Teaching-Learning-Based-Optimization for an Autonomous Vehicle

Ahmed D. Sabiha ORCID...1, Mohamed A. Kamel2, Ehab Said1, Wessam M. Hussein3
1 Department of Mechatronics Engineering, Military Technical College, Cairo, Egypt
2 Department of Mechanical Engineering, Military Technical College, Cairo, Egypt
3 Department of Mechatronics Engineering, Egyptian Academy for Engineering and Advanced Technology (EAEAT), Cairo, Egypt

This study provides a teaching-learning-based optimization (TLBO) path planning method for an autonomous vehicle in a cluttered environment, which takes into account path smoothness and the possibility of collision with nearby obstacles. The path planning problem is tackled as a multiobjective optimization in order to plan an efficient path that allows the vehicle to travel autonomously in crowded settings. The TLBO algorithm is used to find the ideal path, with the goals of finding the shortest path to the target site and maximizing path smoothness, while avoiding obstacles and taking into account the vehicle's dynamic and algebraic properties.

Keywords: autonomous vehicle, path planning, optimization, teaching-learning-based optimization, TLBO

Received: October 1, 2021; Accepted: January 18, 2022; Prepublished online: February 22, 2022; Published: April 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sabiha, A.D., Kamel, M.A., Said, E., & Hussein, W.M. (2022). Path Planning Algorithm Based on Teaching-Learning-Based-Optimization for an Autonomous Vehicle. Communications - Scientific Letters of the University of Zilina24(2), C33-42. doi: 10.26552/com.C.2022.2.C33-C42
Download citation

References

  1. RAJA, P., PUGAZHENTHI, S. Optimal path planning of mobile robots: a review. International Journal of Physical Sciences [online]. 2012, 7(9), p. 1314-1320. eISSN 1992-1950. Available from: https://doi.org/10.5897/IJPS11.1745 Go to original source...
  2. ZHANG, H., BUTZKE, J., LIKHACHEV, M. Combining global and local planning with guarantees on completeness. In: International Conference on Robotics and Automation ICRA: proceedings. 2012. p. 4500-4506. Go to original source...
  3. PATLE, B., BABU L, G., PANDEY, A., PARHI, D. R. K., JAGADEESH, A. A review: on path planning strategies for navigation of mobile robot. Defence Technology [online]. 2019, 15(4), p. 582-606. ISSN 2214-9147. Available from: https://doi.org/10.1016/j.dt.2019.04.011 Go to original source...
  4. INJARAPU, A. S., GAWRE, S. K. A survey of autonomous mobile robot path planning approaches. In: International Conference on Recent Innovations in Signal Processing and Embedded Systems RISE: proceedings [online]. IEEE. 2017. p. 624-628. Available from: https://doi.org/10.1109/RISE.2017.8378228 Go to original source...
  5. SCHWARTZ, J. T., SHARIR, M. On the "piano movers" problem I. the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Communications on Pure and Applied Mathematics [online]. 1983, 36(3), p. 345-398. eISSN 1097-0312. Available from: https://doi.org/10.1002/cpa.3160360305 Go to original source...
  6. WEIGL, M., SIEMIATKOWSKA, B., SIKORSKI, K. A., BORKOWSKI, A. Grid-based mapping for autonomous mobile robot. Robotics and Autonomous Systems [online]. 1993, 11(1), p. 13-21. ISSN 0921-8890. Available from: https://doi.org/10.1016/0921-8890(93)90004-V Go to original source...
  7. CHOSET, H., BURDICK, J. Sensor-based exploration: the hierarchical generalized voronoi graph. The International Journal of Robotics Research [online]. 2000, 19(2), p. 96-125. ISSN 0278-3649, eISSN 1741-3176. Available from: https://doi.org/10.1177/02783640022066770 Go to original source...
  8. CHOSET, H., LYNCH, K., HUTCHINSON, S., KANTOR, G., BURGARD, W., KAVRAKI, L., THRUN, S. Principles of robot motion: theory, algorithms and implementation. Reviews. The Knowledge Engineering Review [online]. 2007, 22(2), p. 209-211. ISSN 0269-8889, eISSN 1469-8005. Available from: https://doi.org/10.1017/S0269888907218016 Go to original source...
  9. KHATIB, O. Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles [online]. COX, I. J., WILFONG, G. T. (eds.). New York: Springer, 1986. p. 396-404. ISBN 978-0-387-97240-4, eISBN 978-1-4613-8997-2. Available from: https://doi.org/10.1007/978-1-4613-8997-2 Go to original source...
  10. SABIHA, A., KAMEL, M., SAID, E., HUSSEIN, W. Trajectory generation and tracking control of an autonomous vehicle based on artificial potential field and optimized backstepping controller. In: 12th International Conference on Electrical Engineering ICEENG: proceedings [online]. IEEE. 2020. p. 423-428. Available from: https://doi.org/10.1109/ICEENG45378.2020.9171708 Go to original source...
  11. MASEHIAN, E., AMIN-NASERI, M. A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. Journal of Robotic Systems [online]. 2004, 21(6), p. 275-300. eISSN 1556-4967. Available from: https://doi.org/10.1002/rob.20014 Go to original source...
  12. CAI, K., WANG, C., CHENG, J., DE SILVA, C. W., MENG, M. Q.-H. Mobile robot path planning in dynamic environments: a survey [online]. arXiv preprint arXiv:2006.14195, 2020. Available from: https://doi.org/10.15878/j.cnki.instrumentation.2019.02.010 Go to original source...
  13. BHASKAR, B. S., RAUNIYAR, A., NATH, R., MUHURI, P. K. Zone-based path planning of a mobile robot using genetic algorithm. In: Industry 4.0 and advanced manufacturing. CHAKRABARTI, A., ARORA, M. (eds.). Singapore: Springer, 2021. ISBN 9789811556890, p. 263-275. Go to original source...
  14. SONG, B., WANG, Z., ZOU, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree bezier curve. Applied Soft Computing [online]. 2021, 100, p. 1-11. ISSN 1568-4946. Go to original source...
  15. LI, F., FAN, X., HOU, Z. A firefly algorithm with self-adaptive population size for global path planning of mobile robot. IEEE Access [online]. 2020, 8, p. 168951-168964. eISSN 2169-3536. Available from: https://doi.org/10.1109/ACCESS.2020.3023999 Go to original source...
  16. XIN, D., HUA-HUA, C., WEI-KANG, G. Neural network and genetic algorithm based global path planning in a static environment. Journal of Zhejiang University-Science A [online]. 2005, 6(6), p. 549-554. ISSN 1009-3095. eISSN 1862-1775. Available from: https://doi.org/10.1007/BF02841763 Go to original source...
  17. KHELCHANDRA, T., HUANG, J., DEBNATH, S. Path planning of mobile robot with neuro-genetic-fuzzy technique in static environment. International Journal of Hybrid Intelligent Systems [online]. 2014, 11(2), p. 71-80. ISSN 1448-5869, eISSN 1875-8819. Available from: https://doi.org/10.3233/HIS-130184 Go to original source...
  18. CASTILLO, O., NEYOY, H., SORIA, J., MELIN, P., VALDEZ, F. A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Applied Soft Computing [online]. 2015, 28, p. 150-159. ISSN 1568-4946. Available from: https://doi.org/10.1016/j.asoc.2014.12.002 Go to original source...
  19. WANG, X., SHI, Y., DING, D., GU, X. Double global optimum genetic algorithm-particle swarm optimizationbased welding robot path planning. Engineering Optimization [online]. 2016, 48(2), p. 299-316. ISSN 0305-215X, eISSN 1029-0273. Available from: https://doi.org/10.1080/0305215X.2015.1005084 Go to original source...
  20. RAO, R. V., SAVSANI, V. J., VAKHARIA, D. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design [online]. 2011, 43(3), p. 303-315. ISSN 0010-4485. Available from: https://doi.org/10.1016/j.cad.2010.12.015 Go to original source...
  21. RAO, R. V. Teaching-learning-based optimization algorithm. In: Teaching learning based optimization algorithm: and its engineering applications [online]. RAO, R.V. (ed.). Cham: Springer, 2016. p. 9-39. ISBN 978-3-319-22731- 3, eISBN 978-3-319-22732-0. Available from: https://doi.org/10.1007/978-3-319-22732-0 Go to original source...
  22. SAVSANI, P., JHALA, R. L., SAVSANI, V. J. Comparative study of different metaheuristics for the trajectory planning of a robotic arm. IEEE Systems Journal. 2014, 10(2), p. 697-708. ISSN 1932-8184, eISSN 1937-9234. Go to original source...
  23. RAO, R. V., WAGHMARE, G. Design optimization of robot grippers using teaching-learning-based optimization algorithm. Advanced Robotics [online]. 2015, 29(6), p. 431-447. ISSN 0169-1864, eISSN 1568-5535. Available from: https://doi.org/10.1080/01691864.2014.986524 Go to original source...
  24. WU, Z., FU, W., XUE, R., WANG, W. A novel global path planning method for mobile robots based on teachinglearning-based optimization. Information [online]. 2016, 7(39), p. 1-11. eISSN 2078-2489. Available from: https://doi.org/10.3390/info7030039 Go to original source...
  25. AOUF, A., BOUSSAID, L., SAKLY, A. TLBO-based adaptive neurofuzzy controller for mobile robot navigation in a strange environment. Computational Intelligence and Neuroscience [online]. 2018, 2018, 3145436. ISSN 1687- 5265, eISSN 1687-5273. Available from: https://doi.org/10.1155/2018/3145436 Go to original source...
  26. HERNANDEZ-BARRAGAN, J. Mobile robot path planning based on conformal geometric algebra and teachinglearning based optimization. IFAC-PapersOnLine [online]. 2018, 51(13), p. 338-343. ISSN 2405-8963. Available from: https://doi.org/10.1016/j.ifacol.2018.07.301 Go to original source...
  27. KASHYAP, A. K., PANDEY, A. Optimized path planning for three-wheeled autonomous robot using teachinglearning-based optimization technique. In: Advances in materials and manufacturing engineering. LI, L., PRATIHAR, D. K., CHAKRABARTY, S., MISHRA, P. C. (eds.). Singapore: Springer, 2020. p. 49-57. ISBN 978-9811513060. Go to original source...
  28. SINGH, G., SHARMA, N., SHARMA, H. Shu ed teaching learning-based algorithm for solving robot path planning problem. International Journal of Metaheuristics. 2020, 7(3), p. 265-283. ISSN 1755-2176, eISSN 1755- 2184. Go to original source...
  29. MOHAMAD, S. A., KAMEL, M. A. Optimization of cylinder liner macro-scale surface texturing in marine diesel engines based on teaching-learning-based optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [online]. 2021, 235(2), p. 329-342. ISSN 1350-6501, eISSN 2041-305X. Available from: https://doi.org/10.1177/1350650120911563 Go to original source...
  30. RAO, R. V., SAVSANI, V. J., VAKHARIA, D. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences [online]. 2012, 183(1), p. 1-15. ISSN 0020-0255. Available from: https://doi.org/10.1016/j.ins.2011.08.006 Go to original source...
  31. RAO, R., PATEL, V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations [online]. 2012, 3(4), p. 535-560. ISSN 1923-2934, eISSN 1923-2926. Available from: https://doi.org/10.5267/j.ijiec.2012.03.007 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.