Communications - Scientific Letters of the University of Zilina 2024, 26(3):C9-C20 | DOI: 10.26552/com.C.2024.027
A Particle Swarm Optimization Based Fuzzy Flcpi-Pso Controller for Quadcopter System
- 1 Laboratory of Smart Grids and Renewable Energies (SRGE), University Tahri Mohammed Bechar, Bechar, Algeria
- 2 Laboratory of Energy in Arid Zones (ENERGARID), University Tahri Mohammed Bechar, Bechar, Algeria
- 3 Laboratory of Renewable Energies and their Applications in Saharan areas (LDREAS), University Tahri Mohammed Bechar, Bechar, Algeria
The quadcopter persist as important roles across diverse applications, and the enhancement of their control efficacy has been the subject of extensive research.
In this work, the authors proposed optimal Proportional Integral (PI) controller based Fuzzy Logic Control (FLC) for the roll, pitch, altitude, and yaw motions of the quadcopter system. The proposed technique uses the Particle Swarm Optimization (PSO) algorithm to tune the parameters of the FLC and enhance the quadcopter performance. The simulation results show that the proposed technique achieves smoothness of control and significant improvement over classical techniques, as the rise time and the settling time are reduced by 61 % and 66 %, respectively. These times are important for stabilizing the system’s response speed and avoiding overshooting or oscillating. This indicates that the FLCPI-PSO can achieve the desired roll and altitude angles more rapidly and effectively.
Keywords: quadcopter model, fuzzy logic controller, optimization, FLCPI-PSO
Grants and funding:
The authors received no financial support for the research, authorship and/or publication of this article.
Conflicts of interest:
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Received: September 21, 2023; Accepted: March 18, 2024; Prepublished online: April 4, 2024; Published: July 11, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- PINES, D. J., BOHORQUEZ, F. Challenges facing future micro-air-vehicle development. Journal of Aircraft [online]. 2006, 43(2), p. 290 -305. ISSN 1533-3868. Available from: https://doi.org/10.2514/1.4922
Go to original source...
- HONG, M., BOUSBAINE, A., WU, M. H., POYI, G. T. Modelling and simulation of a quad-rotor helicopter. In: 6th IET International Conference on Power Electronics, Machines and Drives PEMD 2012: proceedings [online]. IEEE. 2012. eISBN 978-1-84919-616-1. Available from: https://doi.org/10.1049/cp.2012.0318
Go to original source...
- LUPASHIN, S., SCHOLLIG, A., SHERBACK, M., D'ANDREA, R. A simple learning strategy for high-speed quadrocopter multi-flips. In: IEEE International Conference on Robotics and Automation: proceedings [online] [accessed 2023-09-21]. 2010, ISSN 1050-4729, p. 1642-1648. ISSN 1050-4729. Available from: https://doi.org/10.1109/ROBOT.2010.5509452
Go to original source...
- MOHAMMED, B., SAID, B., FATEH, B. Feedforward neural network emulation of a PID continuous-time controller for quadcopter attitude digital control. International Journal of Power Electronics and Drive Systems [online]. 2023, 14(2), p. 799-808 [accessed 2023-09-19]. ISSN 2088-8694. Available from: https://doi.org/10.11591/ijpeds.v14.i2.pp799-808
Go to original source...
- ELAJRAMI, M., SATLA, Z., BENDINE, K. Drone control using the coupling of the PID controller and genetic algorithm. Communications - Scientific Letters of the University of Zilina [online]. 2021, 23(3), p. C75-C82 [accessed 2024-01-18]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/COM.C.2021.3.C75-C82
Go to original source...
- BENHAMMOU, A., HARTANI, A.M., TEDJINI, H., REZK, H., AL-DHAIFALLAH, M. Improvement of autonomy, efficiency, and stress of fuel cell hybrid electric vehicle system using robust controller. Sustainability [online] 2023, 15(7), 5657 [accessed 2024-01-18]. eISSN 2071-1050. Available from: https://doi.org/10.3390/SU15075657
Go to original source...
- BENHAMMOU, A., TEDJINI, H., GUETTAF, Y., SOUMEUR, M. A., HARTANI, M. A., HAFSI, O., BENABDELKADER, A. Exploitation of vehicle's kinetic energy in power management of tow-wheel drive electric vehicles based on ANFIS DTC-SVM comparative study. International Journal of Hydrogen Energy [online]. 2021, 46(54), p. 27758-27769. ISSN 0360-3199. Available from: https://doi.org/10.1016/J.IJHYDENE.2021.06.023
Go to original source...
- TOUFIK, T., TAHRI, U., BECHAR, M., ABDELKHALEK, O., AHMED, A., ABDELKADER, B., OTHMANE, A., AISSA, B., OUSSAMA, H. Dynamic voltage restorer using sliding mode controller: experimental studies Benhammou Aissa Dynamic voltage restorer using sliding mode controller: experimental studies. International Journal of Applied Power Engineering [online]. 2021, 10(4), p. 337-346. ISSN 2252-8792. Available from: https://doi.org/10.11591/ijape.v10.i4.pp337-346
Go to original source...
- BOUNAAMA, F., LAMMARI, K., DRAOUI, B., BOUNAAMA, F., LAMMARI, K., DRAOUI, B. Greenhouse air temperature control using fuzzy PD+I and neuro-fuzzy hybrid system controller. International Journal on Numerical and Analytical Methods in Engineering (IRENA) [online]. 2016, 4(6), p. 172-178 [accessed 2024-01-18]. ISSN 2533-1736. Available from: https://doi.org/10.15866/IRENA.V4I6.12055
Go to original source...
- AISSA, B., HAMZA, T., YACINE, G., AMINE, H. M. Impact of artificial intelligence in renewable energy management of hybrid systems. Physical Sciences Forum [online]. 2023, 6(1), 5 [accessed 2024-01-18]. ISSN 2673-9984. Available from: https://doi.org/10.3390/PSF2023006005
Go to original source...
- ALQAISI, W., BRAHMI, B., GHOMMAM, J., SAAD, M., NERGUIZIAN, V. Vision-based leader-follower approach for uncertain quadrotor dynamics using feedback linearisation sliding mode control. International Journal of Modelling, Identification and Control [online]. 2019, 33(1), p. 9-19 [accessed 2023-09-21]. ISSN 1746-6180. Available from: https://doi.org/10.1504/IJMIC.2019.103980
Go to original source...
- KUANTAMA, E., TARCA, I., TARCA, R. Feedback linearization LQR control for quadcopter position tracking. In: 2018 5th International Conference on Control, Decision and Information Technologies CoDIT 2018: proceedings [online] [accessed 2023-09-21]. IEEE: 2018. eISSN 2576-3555, 204-209. Available from: https://doi.org/10.1109/CODIT.2018.8394911
Go to original source...
- CHIEW, T. H., LEE, H. E., LEE, Y. K., CHANG, K. M., ONG, J. J., EU, K. S. Second order sliding mode controller for altitude and yaw control of quadcopter. In: 2021 11th IEEE International Conference on Control System, Computing and Engineering ICCSCE 2021: proceedings [online]. IEEE. 2021. eISBN 978-1-6654-1281-0, p. 97-102. Available from: https://doi.org/10.1109/ICCSCE52189.2021.9530850
Go to original source...
- SURAJ, S. K., GEORGE, V. I., THIRUNAVUKKARASU, I., VALSA PAUL, T. Design and simulation of a sliding mode-based control design for a quadrotor UAV. Lecture Notes in Electrical Engineering [online]. 2021, 750, p. 495-507 [accessed 2023-09-19]. ISSN 1876-1119. Available from: https://doi.org/10.1007/978-981-16-0336-5_41/COVER
Go to original source...
- BOUCHAIB, A., TALEB, R., MASSOUM, A., MEKHILEF, S. Geometric control of quadrotor UAVs using integral backstepping. Indonesian Journal of Electrical Engineering and Computer Science [online]. 2021, 22(1), p. 53-61 [accessed 2023-09-21]. ISSN 2502-4760. Available from: https://doi.org/10.11591/IJEECS.V22.I1.PP53-61
Go to original source...
- MOEINI, A., LYNCH, A. F., ZHAO, Q. A backstepping disturbance observer control for multirotor UAVs: theory and experiment. International Journal of Control [online]. 2022, 95(9), p. 2364-2378 [accessed 2023-09-19]. ISSN 1366-5820. Available from: https://doi.org/10.1080/00207179.2021.1912393
Go to original source...
- ARGENTIM, L. M., REZENDE, W. C., SANTOS, P. E., AGUIAR, R. A. PID, LQR and LQR-PID on a quadcopter platform. In: 2013 International Conference on Informatics, Electronics and Vision ICIEV 2013: proceedings [online]. IEEE. 2013. ISBN 978-1-4799-0397-9, eISBN 978-1-4799-0400-6. Available from: https://doi.org/10.1109/ICIEV.2013.6572698
Go to original source...
- AHMAD, F., KUMAR, P., BHANDARI, A., PATIL, P. P. Simulation of the quadcopter dynamics with LQR based control. Materials Today: Proceedings [online]. 2020, 24(2), p. 326-332. ISSN 2214-7853. Available from: https://doi.org/10.1016/j.matpr.2020.04.282
Go to original source...
- ELTAYEB, A., RAHMAT, M. F., ELTOUM, M. A. M., IBRAHIM, M. H. S., BASRI, M. A. M. Trajectory tracking for the quadcopter UAV utilizing fuzzy PID control approach. In: 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering, ICCCEEE 2020: proceedings [online]. IEEE. 2021. eISBN 978-1-7281-9111-9. Available from: https://doi.org/10.1109/ICCCEEE49695.2021.9429636
Go to original source...
- TALHA, M., ASGHAR, F., ROHAN, A., RABAH, M., KIM, S. H. Fuzzy logic-based robust and autonomous safe landing for UAV quadcopter. Arabian Journal for Science and Engineering [online]. 2019, 44(3), p. 2627-2639 [accessed 2023-09-19]. ISSN 2191-4281. Available from: https://doi.org/10.1007/S13369-018-3330-Z/METRICS
Go to original source...
- BREESE, B., SCOTT, D., BARAWKAR, S., KUMAR, M. Fuzzy logic controller for force feedback control of quadcopter via tether. In: ASME 2020 Dynamic Systems and Control Conference DSCC 2020: proceedings [online] [accessed 2023-09-19]. 2021. Available from: https://doi.org/10.1115/DSCC2020-3275
Go to original source...
- DARWITO, P. A., INDAYU, N. Adaptive neuro-fuzzy inference system based on sliding mode control for quadcopter trajectory tracking with the presence of external disturbance. Journal of Intelligent Systems and Control [online]. 2023, 2(1), p. 33-46 [accessed 2023-09-19]. ISSN 2957-9805. Available from: https://doi.org/10.56578/JISC020104
Go to original source...
- KORKMAZ, D., ACIKGOZ, H., USTUNDAG, M. Altitude and attitude control of a quadcopter based on neuro-fuzzy controller. Lecture Notes in Electrical Engineering [online]. 2022, 829, p. 1009-1015 [accessed 2023-09-19]. ISSN 1876-1119. Available from: https://doi.org/10.1007/978-981-16-8129-5_154/COVER
Go to original source...
- ABDOLAHI, Y., REZAEIZADEH, A. Black-box identification and iterative learning control for quadcopter. In: 2018 6th International Conference on Control Engineering and Information Technology CEIT 2018: proceedings [online]. IEEE. 2018. eISBN 978-1-5386-7641-7. Available from: https://doi.org/10.1109/CEIT.2018.8751795
Go to original source...
- PIPATPAIBUL, P., OUYANG, P. R. Application of online iterative learning tracking control for quadrotor UAVs. International Scholarly Research Notices [online]. 2013, 2013, 476153. ISSN 2356-7872. Available from: https://doi.org/10.5402/2013/476153
Go to original source...
- BEHERA, L., KAR, I. Intelligent systems and control: principles and applications. New Delhi, India: Oxford University Press, 2010. ISBN 9780198063155.
- PEDRO, J. O., KALA, P. J. Nonlinear control of quadrotor UAV using Takagi-Sugeno fuzzy logic technique. In: 2015 10th Asian Control Conference ASCC: proceedings [online]. IEEE. 2015. eISBN 978-1-4799-7862-5. Available from: https://doi.org/10.1109/ASCC.2015.7244739
Go to original source...
- NOSHADI, A., SHI, J., LEE, W. S., SHI, P., KALAM, A. Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Computing and Applications [online]. 2016, 27(7), p. 2031-2046 [accessed 2024-01-17]. ISSN 0941-0643. Available from: https://doi.org/10.1007/S00521-015-1996-7/METRICS
Go to original source...
- BOUABDALLAH, S. Design and control of quadrotors with applications to autonomous flying [online]. Lausanne, EPFL, 2007. Available from: https://doi.org/10.5075/epfl-thesis-3727
Go to original source...
- SAUD, L. J., MOHAMMED, S. R. Performance evaluation of a PID and a fuzzy PID controllers designed for controlling a simulated quadcopter rotational dynamics model. Journal of Engineering [online]. 2017, 23(7), p. 74-93 [accessed 2024-01-13]. ISSN 2520-3339. Available from: https://doi.org/10.31026/J.ENG.2017.07.05
Go to original source...
- BRESCIANI, T. Modelling, identification and control of a quadrotor helicopter. MSc theses [online]. 2008 [accessed 2024-01-13]. ISSN 0280-5316. Available from: http://lup.lub.lu.se/student-papers/record/8847641
- MATTAVELLI, P., ROSSETTO, L., SPIAZZI, G., TENTI, P. General-purpose fuzzy controller for DC-DC converters. IEEE Transactions on Power Electronics [online]. 1997, 12(1), p. 79-86 [accessed 2023-09-21]. ISSN 0885-8993. Available from: https://doi.org/10.1109/63.554172
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.