Communications - Scientific Letters of the University of Zilina 2024, 26(4):C38-C46 | DOI: 10.26552/com.C.2024.055

Robust Adaptive Speed Control for the DC Motor Based on a Modified MRAC

Mokhtar Nesri ORCID...1, *, Hichem Benkadi ORCID...2, Guedida Sifelislam ORCID...3, Abdelhakim Idir ORCID...4, Mohamed Fouad Benkhoris ORCID...5
1 Ecole Superieure Ali Chabati, Reghaia Algiers, Algeria
2 Ecole Superieure des Techniques de l'Aeronautique (ESTA), Dar El Beida, Algiers, Algeria
3 UER ELT, Ecole Militaire Polytechnique, Algiers, Algeria
4 Department of Electrical Engineering, University Mohamed Boudiaf of M'sila, M'sila, Algeria
5 IREENA Laboratory Universite de Nantes, Nantes, France

The aim of this research was to develop a high performance adaptive control strategy based on the model reference adaptive control (MRAC) approach, using the MIT (Massachusetts Institute of Technology) law rule as an adjustment mechanism to control the speed of a DC motor. In this work, we propose a modified model reference adaptive control (MRAC) to exploit the advantages of adaptive control within the classical feedback loop. This new control strategy is a hybrid between the classical control loop and MRAC, designed specifically for the control of a DC motor system. The modified MRAC demonstrates remarkable robustness and superior control performance, particularly in terms of overshoot percentage, settling time, rise time and disturbance rejection. The effectiveness of the proposed control strategy was evaluated with the use of various reference signals.

Keywords: model reference adaptive control (MRAC), DC motor, MIT rule, adaptive control, modified MRAC
Grants and funding:

The authors received no financial support for the research, authorship and/or publication of this article.

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received: June 28, 2024; Accepted: August 26, 2024; Prepublished online: September 19, 2024; Published: October 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Nesri, M., Benkadi, H., Sifelislam, G., Idir, A., & Benkhoris, M.F. (2024). Robust Adaptive Speed Control for the DC Motor Based on a Modified MRAC. Communications - Scientific Letters of the University of Zilina26(4), C38-46. doi: 10.26552/com.C.2024.055
Download citation

References

  1. EKINCI, S., IZCI, D., HEKIMOGLU, B. Optimal FOPID speed control of DC motor via opposition-based hybrid manta ray foraging optimization and simulated annealing algorithm. Arabian Journal for Science and Engineering [online]. 2021, 46(2), p. 1395-1409. ISSN 2193-567X, eISSN 2191-4281. Available from: https://doi.org/10.1007/s13369-020-05050-z Go to original source...
  2. IDIR, A., KHETTAB, K., BENSAFIA, Y. Design of an optimally tuned fractionalized PID controller for dc motor speed control via a henry gas solubility optimization algorithm. International Journal of Intelligent Engineering and Systems [online]. 2022, 15(2), 59. ISSN 2088-8694, eISSN 2722-256X. Available from: http://doi.org/10.11591/ijpeds.v15.i2.pp696-703 Go to original source...
  3. SONG, B., XIAO, Y., XU, L. Design of fuzzy PI controller for brushless DC motor based on PSO-GSA algorithm. Systems Science and Control Engineering [online]. 2020, 8(1), p. 67-77. eISSN 2164-2583. Available from: https://doi.org/10.1080/21642583.2020.1723144 Go to original source...
  4. ELTOUM, M. A. M., HUSSEIN, A., ABIDO, M. A. Hybrid fuzzy fractional-order PID-based speed control for brushless DC motor. Arabian Journal for Science and Engineering [online]. 2021, 46(10), p. 9423-9435. ISSN 2193-567X, eISSN 2191-4281. Available from: https://doi.org/10.1007/s13369-020-05262-3 Go to original source...
  5. QI, Z., SHI, Q., ZHANG, H. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Transactions on Industrial Electronics [online]. 2019, 67(7), p. 5637-5646. ISSN 0278-0046, eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2019.2934030 Go to original source...
  6. DING, J., CHEN, L., CAO, Z., GUO, H. Convergence analysis of the modified adaptive extended Kalman filter for the parameter estimation of a brushless DC motor. International Journal of Robust and Nonlinear Control [online]. 2021, 31(16), p. 7606-7620. ISSN 1049-8923, eISSN 1099-1239. Available from: https://doi.org/10.1002/rnc.5706 Go to original source...
  7. ACIKGOZ, H. Speed control of DC motor using interval type-2 fuzzy logic controller. International Journal of Intelligent Systems and Applications in Engineering (IJISAE) [online]. 2018, 6(3), p. 197-202. ISSN 2147-6799. Available from: https://doi.org/10.18201/ijisae.2018644777 Go to original source...
  8. BENCHAITA, H., LADACI, S. Fractional adaptive SMC fault tolerant control against actuator failures for wing rock supervision. Aerospace Science and Technology [online]. 2021, 114, 106745. Available from: https://doi.org/10.1016/j.ast.2021.106745 Go to original source...
  9. LADACI, S., BENCHAITA, H. Fractional order fault tolerant control-a survey. International Journal of Robotics and Control Systems [online]. 2023, 3(3), p. 561-587. eISSN 2775-2658. Available from: https://doi.org/10.31763/ijrcs.v3i3.1093 Go to original source...
  10. ROTHE, J., ZEVERING, J., STROHMEIER, M., MONTENEGRO, S. A modified model reference adaptive controller (M-MRAC) using an updated MIT-rule for the altitude of a UAV. Electronics [online]. 2020, 9(7), 1104. eISSN 2079-9292. Available from: https://doi.org/10.3390/electronics9071104 Go to original source...
  11. ASTROM, K. J., WITTENMARK, B. Adaptive control. 2. ed. United States and Canada: Addison-Wesley Publishing Company, 1995. ISBN 0-201-55866-1.
  12. SEGHIRI, T., LADACI, S., HADDAD, S. Fractional order adaptive MRAC controller design for high-accuracy position control of an industrial robot arm. International Journal of Advanced Mechatronic Systems [online]. 2023, 10(1), p. 8-20. ISSN 1756-8412, eISSN 1756-8420. Available from: https://doi.org/10.1504/IJAMECHS.2022.10047818 Go to original source...
  13. GUEDIDA, S., TABBACHE, B., BENZAOUI, K. M. S., NOUNOU, K., NESRI, M. Novel speed sensorless DTC design for a five-phase induction motor with an intelligent fractional order controller based-MRAS estimator. Power Electronics and Drives, [online]. 2024, 9(44), p. 63-85, eISSN 2543-4292. Available from: https://doi.org/10.2478/pead-2024-0005 Go to original source...
  14. SHEKHAR, A., SHARMA, A. Review of model reference adaptive control. In 2018 International Conference on Information, Communication, Engineering and Technology ICICET: proceedings [online]. IEEE. 2018. eISBN 978-1-5386-5510-8, p. 1-5. Available from: https://doi.org/10.1109/ICICET.2018.8533713 Go to original source...
  15. YNINEB, A. R., LADACI, S. MRAC adaptive control design for an F15 aircraft pitch angular motion using dynamics inversion and fractional-order filtering. International Journal of Robotics and Control Systems [online]. 2022, 2(2), p. 240-250. eISSN 2775-2658. Available from: https://doi.org/10.31763/ijrcs.v2i2.574 Go to original source...
  16. HUMAIDI, A. J., HAMEED, A. H., HAMEED, M. R. Robust adaptive speed control for DC motor using novel weighted E-modified MRAC. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering ICPCSI: proceedings [online]. IEEE. 2017. ISBN 978-1-5386-0813-5, eISBN 978-1-5386-0814-2, p. 313-319. Available from: https://doi.org/10.1109/ICPCSI.2017.8392302 Go to original source...
  17. LADACI, S., CHAREF, A. On fractional adaptive control. Nonlinear Dynamics [online]. 2006, 43, p. 365-378. ISSN 0924-090X, eISSN 1573-269X. Available from: https://doi.org/10.1007/s11071-006-0159-x Go to original source...
  18. SHAH, R., SANDS, T. Comparing methods of DC motor control for UUVs. Applied Sciences [online]. 2021, 11(11), 4972. eISSN 2076-3417. Available from: https://doi.org/10.3390/app11114972 Go to original source...
  19. IDIR, A., CANALE, L., BENSAFIA, Y., KHETTAB, K. Design and robust performance analysis of low-order approximation of fractional PID controller based on an IABC algorithm for an automatic voltage regulator system. Energies [online]. 2022, 15(23), 8973. eISSN 1996-1073. Available from: https://doi.org/10.3390/en15238973 Go to original source...
  20. IDIR, A., KIDOUCHE, M., BENSAFIA, Y., KHETTAB, K., TADJER, S. A. Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO. International Journal of Intelligent Engineering and Systems [online]. 2018, 20, 21. ISSN 2088-8694, eISSN 2722-256X. Available from: https://doi.org/10.22266/ijies2018.0831.24 Go to original source...
  21. IDIR, A., CANALE, L., TADJER, S. A., CHEKIRED, F. High order approximation of fractional PID controller based on grey wolf optimization for DC motor. In: 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe EEEIC/I&CPS Europe: proceedings [online]. IEEE. 2022. eISBN 978-1-6654-8537-1, p. 1-6. Available from: https://doi.org/10.1109/EEEIC/ICPSEurope54979.2022.9854520 Go to original source...
  22. ASSABAA, M., CHAREF, A., LADACI, S. Fractional adaptive high-gain control with σ-modification. In: 3rd International Conference on Systems and Control: proceedings [online]. IEEE. 2013. ISSN 2379-0059, eISSN 2379-0067, eISBN 978-1-4799-0275-0, p. 248-252. Available from: https://doi.org/10.1109/ICoSC.2013.6750866 Go to original source...
  23. HEKIMOGLU, B. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access [online]. 2019, 7, p. 38100-38114. eISSN 2169-3536. Available from: https://doi.org/10.1109/ACCESS.2019.2905961 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.