Communications - Scientific Letters of the University of Zilina 2025, 27(1):B75-B84 | DOI: 10.26552/com.C.2025.015

Justification of the Method of Vehicle Engine Radiator Ultrasonic Cleaning

Baurzhan Moldabaev ORCID...1, Kirill Sinelnikov ORCID...2, Aliya Kukesheva ORCID...2, *
1 NJSC E. A. Buketov Karaganda University, Karaganda, Republic of Kazakhstan
2 NPJSC Abylkas Saginov Karaganda Technical University, Karaganda, Republic of Kazakhstan

The article presents theoretical and experimental results on ultrasonic cleaning of a vehicle radiator. Criterion relationships between ultrasound energy, kinetic energy of the liquid, and shock wave energy were established, enabling the evaluation of cavitation energy efficiency and cleaning effectiveness. Experimental confirmation was obtained using a developed full-size bench. Using the developed full-size bench, the numerical values of parameters were obtained that made it possible to calculate the values of energies involved in the cavitation process, the ratio of which allows evaluating the effectiveness of washing the radiator from scale. The cavitation coefficient of erosion efficiency was established, proving the effectiveness of ultrasonic cleaning. Results confirm the applicability of this method for cleaning the vehicle radiators.

Keywords: cooling system, ultrasound energy, kinetic energy of liquid, shock wave energy, similarity theory and dimensional analysis, cavitation coefficient, erosion efficiency
Grants and funding:

The authors received no financial support for the research, authorship and/or publication of this article.

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received: August 4, 2024; Accepted: November 26, 2024; Prepublished online: December 13, 2024; Published: January 2, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Moldabaev, B., Sinelnikov, K., & Kukesheva, A. (2025). Justification of the Method of Vehicle Engine Radiator Ultrasonic Cleaning. Communications - Scientific Letters of the University of Zilina27(1), B75-84. doi: 10.26552/com.C.2025.015
Download citation

References

  1. MAYER, A. Particle filter retrofit for all diesel engines. Renningen: Expert Verlag, 2008. ISBN 978-3-8169-2850-8.
  2. KADYROV, A., KRYUCHKOV, Y., SINELNIKOV, K., GANYUKOV, A., SAKHAPOV, R., KUKESHEVA, A. Studying the process of the internal combustion engine exhaust gas purification by an electric pulse. Communications - Scientific Letters of the University of Zilina [online]. 2022, 24(4), p. B275-B287 [accessed 2022-08-15]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/com.C.2022.4.B275-B287 Go to original source...
  3. KADYROV, A., KUKESHEVA, A., KRYUCHKOV, Y., PAK, I., KURMASHEVA, B., KABIKENOV, S. Development of calculation methodology for optimizing the operating mode of an electric pulse unit for cleaning exhaust gases. Communications - Scientific Letters of the University of Zilina [online]. 2024, 26(1), p. B41-B53 [accessed 2023-11-02]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/com.C.2024.011 Go to original source...
  4. CASTIGLIONE, T., PIZZONIA, F., BOVA, S. A novel cooling system control strategy for internal combustion engines. SAE International Journal of Materials and Manufacturing [online]. 2016, 9(2), p. 294-302 [accessed 2016-05-04]. ISSN 1946-3979, eISSN 1946-3987. Available from: https://doi.org/10.4271/2016-01-0226 Go to original source...
  5. SVENSSON, M., BYTTNER, S., ROGNVALDSSON, T. Self-organizing maps for automatic fault detection in a vehicle cooling system. In: 4th International IEEE Conference Intelligent Systems: proceedings [online]. Vol. 3. IEEE, 2008. ISBN 978-1-4244-1739-1, p. 24-8-24-12. Available from: http://dx.doi.org/10.1109/IS.2008.4670481 Go to original source...
  6. DEEPANKUMAR, S., SARAVANAN, B., SUDHIRKUMAR, V., BOOPALAN, N., SUNDARAMAHALINGAM, A., DHAYANEETHI, S. Design and analysis with optimization of car radiators using nanofluids [online]. In: Advanced manufacturing systems and innovative product design. DEEPAK, B. B.V. L., PARHI, D. R. K., BISWAL, B. B. (Eds.). Singapore: Springer, 2021. ISBN 978-981-15-9852-4 Available from: https://doi.org/10.1007/978-981-15-9853-1_4 Go to original source...
  7. SHOUGANG, Q. Fault detection and maintenance of automobile engine cooling system. Interdisciplinary Journal of Engineering and Environmental Sciences [online]. 2023, 10(2), p. 24-28 [accessed 2023-04-07]. ISSN 2994-2780. Available from: https://sadijournals.org/index.php/ijees/article/view/502
  8. SARSEMBEKOV, B. K., KADYROV, A. S., KUNAYEV, V. A., ISSABAYEV, M. S., KUKESHEVA, A. B. Method of cleaning internal combustion engine radiator tubes with ultrasound. Material and Mechanical Engineering Technology [online]. 2024, 6(3), p. 44-53 [accessed 2024-08-15]. ISSN 2706-977X. Available from: https://doi.org/10.52209/2706-977X_2024_3_44 Go to original source...
  9. KADYROV, A., SARSEMBEKOV, B., GANYUKOV, A., SUYUNBAEV, S., SINELNIKOV, K. Ultrasonic unit for reducing the toxicity of diesel vehicle exhaust gases. Communications - Scientific Letters of the University of Zilina [online]. 2022, 24(3), p. B189-B198 [accessed 2022-02-07]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/com.C.2022.3.B189-B198 Go to original source...
  10. PAK, I., KADYROV, A., ASKAROV, B., SULEYEV, B., KARSAKOVA, A. Developing and studying the method of ultrasonic purification and utilization of internal combustion engine exhaust gases. Communications - Scientific Letters of the University of Zilina [online]. 2023, 25(3), p. B245-B258. [accessed 2023-06-19]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/com.C.2023.060 Go to original source...
  11. KADYROV, A., BEMBENEK, M., SARSEMBEKOV, B., KUKESHEVA A., NURKUSHEVA, S. The influence of the frequency of ultrasound on the exhaust gas purification process in a diesel car muffler. Applied Science [online]. 2024, 14(12), p. 1-19 [accessed 2024-06-24]. eISSN 2076-3417. Available from: https://doi.org/10.3390/app14125027 Go to original source...
  12. KADYROV, A., SINELNIKOV, K., SAKHAPOV, R., GANYUKOV, A., KURMASHEVA, B., SUYUNBAEV, S. Studying the process of transport equipment cooling system ultrasonic cleaning. Communications - Scientific Letters of the University of Zilina [online]. 2022, 24(4), p. B288-B300. [accessed 2022-07-28]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.26552/com.C.2022.4.B288-B300 Go to original source...
  13. SAKHAPOV, R. L. Method of cleaning internal combustion engine radiator tubes with ultrasound. Material and Mechanical Engineering Technology [online]. 2024, 6(2), p. 18-24 [accessed 2024-07-15]. ISSN 2706-977X. Available from: https://doi.org/10.52209/2706-977X_2024_2_18 Go to original source...
  14. SUSLICK, C. P. Sonochemistry. Science [online]. 1990, 247(4949), p. 1439-1445 [accessed 1990-03-23]. ISSN 0036-8075. Available from: https://doi.org/10.1126/science.247.4949.1439 Go to original source...
  15. YAMASHITA, T., ANDO, K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: role of cavitation bubbles as physical cleaning agents. Ultrasonics Sonochemistry [online]. 2019, 59(3), p. 268-279 [accessed 2018-11-27]. ISSN 1350-4177, eISSN 1873-2828. Available from: https://doi.org/10.1016/j.ultsonch.2018.11.025 Go to original source...
  16. JOOST ROOZE, J., REBROV, E. V., SCHOUTEN, J. C., KEURENTJES, J. T. F. Dissolved gas and ultrasonic cavitation - a review. Ultrasonics Sonochemistry [online]. 2013, 20(1), p. 1-11 [accessed 2013-01-27]. ISSN 1350-4177, eISSN 1873-2828. Available from: https://doi.org/10.1016/j.ultsonch.2012.04.013 Go to original source...
  17. YAMASHITA, T., YAMAUCHI, R., ANDO, K. Progress in ultrasonic cleaning research. Japanese Journal of Multiphase Flow [online]. 2018, 32(2), p. 210-217 [accessed 2018-07-15]. ISSN 0914-2843, ISSN 1881-5790. Available from: https://doi.org/10.3811/jjmf.2018.T001 Go to original source...
  18. KAMAR, N., MOSTEFA, M. L. P., MUHR, H., JOST, P. O. Influence of ultrasonic treatment on heat transfer in the heat exchanger. Journal of Physics Communications [online]. 2022, 6(9), p. 1-17 [accessed 2022-09-16]. ISSN 1335-4205, eISSN 2585-7878. Available from: https://doi.org/10.1088/2399-6528/ac92c2 Go to original source...
  19. FIELDS, J. T. Ultrasonic radiator cleaning system. US Patent. US4705054A. 10.11.1987.
  20. TEIICHIROU, Y. M., SHIN, I., TERUTAKA, Y., TSUMAKI, S. N., KITADA, Y. Ultrasonic cleaning apparatus US Patent. US20090025761A1. 29.01.2009.
  21. NAGARAJAN, R., DIWAN, M., AWASTHI, P., SHUKLA, A., SHARMA, P. Optimization of ultrasonic cleaning for erosion-sensitive microelectronic components. In: 17th Annual SEMI/IEEE Conference Advanced Semiconductor Manufacturing Conference: proceedings [online]. IEEE. 2006. ISBN 1-4244-0254-9, p. 233-237. Available from: https://doi.org/10.1109/ASMC.2006.1638750 Go to original source...
  22. YUSOF, N. S. M., BABGI, B., ALGHAMDI, Y., AKSU, M., MADHAVAN, J., ASHOKKUMAR, M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry [online]. 2016, 29(1), p. 568-576 [accessed 2015-07-18]. ISSN 1350-4177, eISSN 1873-2828. Available from: https://doi.org/10.1016/j.ultsonch.2015.06.013 Go to original source...
  23. KADYROV, A., KUKESHEVA, A., KRYUCHKOV, Y. (2024). Establishing the parameters of the operation mode of the electric pulse automobile muffler. Journal of Applied Engineering Science [online]. 2024, 22(1), p. 89-99 [accessed 2024-03-17]. ISSN 1451-4117, eISSN 1821-3197. Available from: https://doi.org/10.5937/jaes0-45196 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.