Communications - Scientific letters of the University of Zilina X:X | DOI: 10.26552/com.C.2026.013
Cloud-Based Modular System for Acquisition and Visualization of OCO-2 Remotely Sensed CO2 Data
- 1 Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
- 2 Research Centre, University of Zilina, Zilina, Slovakia
- 3 Travelco s.r.o., Oscadnica, Slovakia
- 4 Department of Information Systems Development, University Zagreb, Varazdin, Croatia
In this paper is presented a cloud-based framework for automated acquisition and visualization of Orbiting Carbon Observatory-2 (OCO-2) satellite CO₂ data. The system employs an ETL pipeline with OPeNDAP protocol for selective data retrieval, reducing network overhead while processing L2 Standard and L2 Lite FP products. Built on Amazon Web Services (AWS) infrastructure, using Python (Pandas, Dash, Plotly) and Docker orchestration, the modular architecture implements dependency injection for runtime flexibility. The deployed system achieves daily automated ingestion with 2.25 km × 1.29 km spatial resolution, enabling the real-time monitoring through interactive web visualization. The system is designed as a foundation for future analytical research, providing ready integration points for machine learning models to perform advanced CO₂ pattern recognition and predictive analysis.
Keywords: CO₂, data acquisition, remote sensing, machine learning
Grants and funding:
This work was supported by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under Project 09I03-03-V04-00562.
Conflicts of interest:
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Received: November 14, 2025; Accepted: December 5, 2025; Prepublished online: January 16, 2026
References
- SELTENRICH, N. A Satellite view of pollution on the ground: long-term changes in global nitrogen dioxide. Environmental Health Perspectives [online]. 2016, 124(3), A56 [accessed 2025-11-20]. ISSN 0091-6765, eISSN 1552-9924. Available from: https://doi.org/10.1289/ehp.124-A56
Go to original source... - HAKKARAINEN, J., IALONGO, I., KOENE, E., SZELĄG, M. E., TAMMINEN, J., KUHLMANN, G., BRUNNER, D. Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: an application to the synthetic SMARTCARB dataset. Frontiers in Remote Sensing [online]. 2022, 3, 878731 [accessed 2025-11-20]. eISSN 2673-6187. Available from: https://doi.org/10.3389/frsen.2022.878731
Go to original source... - KUHLMANN, G., HENNE, S., MEIJER, Y., BRUNNER, D. Quantifying CO2 emissions of power plants with CO2 and NO2 imaging satellites. Frontiers in Remote Sensing [online]. 2021, 2, 689838 [accessed 2025-10-19]. eISSN 2673-6187. Available from: https://doi.org/10.3389/frsen.2021.689838
Go to original source... - CAJOVA KANTOVA, N., BELANY, P., HOLUBCIK, M., CAJA, A. Energy consumption depending on the durability of pellets formed from sawdust with an admixture of FFP2 masks. Energies [online]. 2022, 15(13), 4813 [accessed 2025-10-28]. eISSN 1996-1073. Available from: https://doi.org/10.3390/en15134813
Go to original source... - LIN, X., VAN DER A, R., DE LAAT, J., ESKES, H., CHEVALLIER, F., CIAIS, P., DENG, Z., GENG, Y., SONG, X., NI, X., HUO, D., DOU, X., LIU, Z. Monitoring and quantifying CO2 emissions of isolated power plants from space. Atmospheric Chemistry and Physics [online]. 2023, 23(11), p. 6599-6611 [accessed 2025-10-15]. ISSN 1680-7375, eISSN 1680-7324. Available from: https://doi.org/10.5194/acp-23-6599-2023
Go to original source... - DIMDORE-MILES, O. B., PALMER, P. I., BRUHWILER, L. P. Detecting changes in Arctic methane emissions: limitations of the inter-polar difference of atmospheric mole fractions. Atmospheric Chemistry and Physics [online]. 2018, 18(24), p. 17895-17907 [accessed 2025-10-29]. ISSN 1680-7375, eISSN 1680-7324. Available from: https://doi.org/10.5194/acp-18-17895-2018
Go to original source... - BLACKHURST, M., MATTHEWS, H. S. Comparing sources of uncertainty in community greenhouse gas estimation techniques. Environmental Research Letters [online]. 2022, 17(5), 053002 [accessed 2025-10-15]. ISSN 1748-9326. Available from: https://doi.org/10.1088/1748-9326/ac6084
Go to original source... - LIU, F., DUNCAN, B. N., KROTKOV, N. A., LAMSAL, L. N., BEIRLE, S., GRIFFIN, D., MCLINDEN, C. A., GOLDBERG, D. L., LU, Z. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics [online]. 2020, 20(1), p. 99-116 [accessed 2025-10-15]. ISSN 1680-7375, eISSN 1680-7324. Available from: https://doi.org/10.5194/acp-20-99-2020
Go to original source... - WU, S., YAN, Y., DU, Z., ZHANG, F., LIU, R. Spatiotemporal visualization of time-series satellite-derived CO2 flux data using volume rendering and GPU-based interpolation on a cloud-driven digital earth. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2017, IV-4/W2, p. 77-85 [accessed 2025-10-11]. ISSN 2194-9042, eISSN 2194-9050. Available from: https://doi.org/10.5194/isprs-annals-IV-4-W2-77-2017
Go to original source... - YAVARI, A., MIRZA, I. B., BAGHA, H., KORALA, H., DIA, H., SCIFLEET, P., SARGENT, J., TJUNG, C., SHAFIEI, M. ArtEMon: artificial intelligence and internet of things powered greenhouse gas sensing for real-time emissions monitoring. Sensors [online]. 2023, 23(18), 7971 [accessed 2025-11-05]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s23187971
Go to original source... - RUSHTON, C. E., TATE, J. E., SJODIN, A. A modern, flexible cloud-based database and computing service for real-time analysis of vehicle emissions data. Urban Informatics [online]. 2025, 4(1), 1 [accessed 2025-10-17]. eISSN 2731-6963. Available from: https://doi.org/10.1007/s44212-024-00066-4
Go to original source... - CAI, K., GUAN, L., LI, S., ZHANG, S., LIU, Y. Full-coverage estimation of CO2 concentrations in China via multisource satellite data and Deep Forest model. Scientific Data [online]. 2024, 11(1), 1231 [accessed 2025-10-29]. eISSN 2052-4463. Available from: https://doi.org/10.1038/s41597-024-04063-9
Go to original source... - OTHMAN, A., HRAD, J., HAJEK, J., MAGA, D. Control strategies of hybrid energy harvesting - a survey. Sustainability [online]. 2022, 14(24), 16670 [accessed 2025-10-28]. eISSN 2071-1050. Available from: https://doi.org/10.3390/su142416670
Go to original source... - TANIMOTO, H., MATSUNAGA, T., SOMEYA, Y., FUJINAWA, T., OHYAMA, H., MORINO, I., YASHIRO, H., SUGITA, T., INOMATA, S., MÜLLER, A., SAEKI, T., YOSHIDA, Y., NIWA, Y., SAITO, M., NODA, H., YAMASHITA, Y., IKEDA, K., SAIGUSA, N., MACHIDA, T., FREY, M. M., LIM, H., SRIVASTAVA, P., JIN, Y., SHIMIZU, A., NISHIZAWA, T., KANAYA, Y., SEKIYA, T., PATRA, P., TAKIGAWA, M., BISHT, J., KASAI, Y., SATO, T. O. The greenhouse gas observation mission with Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW): objectives, conceptual framework and scientific contributions. Progress in Earth and Planetary Science [online]. 2025, 12(1), 8 [accessed 2025-10-28]. eISSN 2197-4284. Available from: https://doi.org/10.1186/s40645-025-00684-9
Go to original source... - JANAIRO, A. G., CONCEPCION, R., GUILLERMO, M., FERNANDO, A. A Cloud computing framework for space farming data analysis. AgriEngineering [online]. 2025, 7(5), 149 [accessed 2025-10-28]. eISSN 2624-7402. Available from: https://doi.org/10.3390/agriengineering7050149
Go to original source... - SCHUMACHER, B., GRIFFITHS, P., PEBESMA, E., DRIES, J., JACOB, A., THIEX, D., MOHR, M., BRIESE, C. openEO Platform - showcasing a federated, accessible platform for reproducible large-scale Earth Observation analysis. In: EGU General Assembly 2023: abstracts [online]. 2023. EGU23-8526 [accessed 2025-10-25]. Available from: https://doi.org/10.5194/egusphere-egu23-8526
Go to original source... - ROMERO JURE, P. V., CABRAL, J. B., MASUELLI, S. ETL for the integration of remote sensing data. In: Argentine Symposium on Images and Vision / Simposio Argentino de Imagenes y Vision (SAIV 2023) - JAIIO 52: proceedings [online]. 2023 [accessed 2025-10-22]. Available from: http://sedici.unlp.edu.ar/handle/10915/165724
- SEMLALI, B.-E. B., AMRANI, C. E., ORTIZ, G., BOUBETA-PUIG, J., GARCIA-DE-PRADO, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Computers and Electrical Engineering [online]. 2021, 93, 107257 [accessed 2025-10-26]. ISSN 0045-7906, eISSN 1879-0755. Available from: https://doi.org/10.1016/j.compeleceng.2021.107257
Go to original source... - SEMLALI, B.-E. B., AMRANI, C. E. A Stream processing software for air quality satellite datasets. In: Advanced Intelligent Systems for Sustainable Development (AI2SD'2020). KACPRZYK, J., BALAS, V. E., EZZIYYANI, M. (Eds.). Cham: Springer International Publishing, 2022. ISBN 978-3-030-90633-7, p. 839-853. Available from: https://doi.org/10.1007/978-3-030-90633-7_71
Go to original source... - OPeNDAP at American Geophysical Union (AGU) 2024 - OPeNDAP [online] [accessed 2025-11-20]. Available from: https://www.opendap.org/opendap-at-american-geophysical-union-agu-2024/
- OPeNDAP at American Geophysical Union (AGU) 2023 - OPeNDAP [online] [accessed 2025-11-20]. Available from: https://www.opendap.org/opendap-at-american-geophysical-union-agu-2023/
- University Corporation for Atmospheric Research [online] [accessed 2025-10-27]. Available from: https://www.ucar.edu/
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

ORCID...