Communications - Scientific Letters of the University of Zilina 2017, 19(11):87-93 | DOI: 10.26552/com.C.2017.2A.87-93

Finite Element Modeling Piezoelectric Materials under Thermal Loads with Application for Quantum Dots

Milan Zmindak1, Pavol Novak1, Peter Bishay2
1 Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, Slovakia
2 College of Engineering and Computer Science, California State University, Northridge, USA

Significant research has been done in the analysis of properties of quantum dots over the previous decade. A 3D finite element model is developed to analyze quantum dots (QD) under static thermal loads. The lattice mismatch between the quantum dot and the piezoelectric matrix is created by different thermal properties of materials at enhanced temperature of this electronic structure. The fully coupled thermo-piezoelectricity is applied to the analysis of the problem. Commercial FEM software ANSYS was used for analysis. Finite element numerical results are given for the dot with a cubic shape. Numerical results for the InAs/GaAs QD nanostructure show that the elastic and electric fields are strongly influenced by the differences between the material properties of the piezoelectric QD and matrix.

Keywords: quantum dots; piezoelectricity; finite element modeling; coupled thermo-piezoelectricity; Ansys

Published: April 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zmindak, M., Novak, P., & Bishay, P. (2017). Finite Element Modeling Piezoelectric Materials under Thermal Loads with Application for Quantum Dots. Communications - Scientific Letters of the University of Zilina19(2A), 87-93. doi: 10.26552/com.C.2017.2A.87-93
Download citation

References

  1. DAVIES J. H.: Elastic and Piezoelectric Fields around a Buried Quantum Dot: A Simple Picture. J. Appl. Phys., 84, 1998, 1358-1365. Go to original source...
  2. Available on the website: http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html.
  3. Available on the website: https://en.wikipedia.org/wiki/Quantum_dot.
  4. ILAHI, B., SOUAF, M., BAIRA, M., ALRASHDI, J., SFAXI, L., ALHAYAA, A., MAAREL, H.: Evaluation of InAs/GaAs QQs Size with Growth Rate: A Numerical Investigation. J. of Nanomaterials, 2015, http://dx.doi.org/10.1155/2015/847018. Go to original source...
  5. BIMBERG, D.; GRUNDMANN, M.; LEDENTSOV N. N.: Quantum Dot Heterostructures. Wiley: New York, 1998.
  6. GRUNDMANN, M., STIER, O., BIMBERG D.: InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure. Phys. Rev. B, vol. 52, 1995, 11969. Go to original source...
  7. ANDREEV, A. D., DOWNES, J. R., FAUX, D. A., O' REILLY, E. P.: Strain Distribution in Quantum Dots of Arbitrary Shape. J. Appl. Phys., 86, 1999, 297-305. Go to original source...
  8. GASPAREC, A., SAGA, M., PECHAC, P.: Numerical Modelling of Ferrite Material Impact on the Effectiveness of Induction Heating Process. Communications - Scientific Letters of the University of Zilina, 17, 3, 2015, 12-17. Go to original source...
  9. MUSA, S. M.: Computational Finite Element Methods in Nanotechnology. CRC Press, 2012.
  10. BOCKO, J., LENGVARSKY, P.: Bending Vibrations of Carbon Nanotubes by using Nonlocal Theory. Procedia Engineering, 96, 2014, 21-27. Go to original source...
  11. MURIN, J., KUTIS, V.: An Effective Multilayered Sandwich Beam-Link Finite Element for Solution of the Electro-Thermo-Structural Problems. Int. J. of Computers and Structures, 87, 2009, 1496-1507. Go to original source...
  12. MINDLIN, R. D.: Equations of High Frequency Vibrations of Thermopiezoelasticity Problems. Intern. J. of Solids and Structures, 10, 1974, 625-637. Go to original source...
  13. QIN, Q. H., YANG, Q. S.: Macro-Micro Theory on Multifield Coupling Behaviour of Heterogeneous Materials. Springer, 2008. Go to original source...
  14. ANSYS Mechanical APDL Coupled-Field Analysis Guide. ANSYS, Inc., 2016.
  15. ANSYS Mechanical APDL Element reference Element reference. ANSYS, Inc., 2016.
  16. PATIL, S. R., MELNIK, R. V. N.: Thermomechanical Effects in Quantum Dots. Nanotechnology, 20, 2009. Go to original source...
  17. GLAZOV, V. M., PASHINKIN, A. S.: Thermal Expansion and Heat Capacity of GaAs and InAs. Inorganic Materials, 2000, 225-231. Go to original source...
  18. PAN, E., ALBRECHT, J. D., ZHANG Y.: Elastic and Piezoelectric Fields in Quantum Wire Semiconductor Structures - A Boundary Integral Equation Analysis. Phys. Stat. Sol. B, 244, 2007, 1925-1939. Go to original source...
  19. PAN, E., CHEN, W. Q.: Static Green's Functions in Anisotropic Media. Cambridge University Press, 2015. Go to original source...
  20. DVORAK, G.: Micromechanics of Composite Materials. Springer, 2013. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.