Communications - Scientific Letters of the University of Zilina 2020, 22(3):78-88 | DOI: 10.26552/com.C.2020.3.78-88

Analysis of Dynamic Parameters of the System of Raster Formation and Control

Antanas Fursenko1, Arturas Kilikevicius1, Kristina Kilikeviciene2, Jonas Skeivalas3, Albinas Kasparaitis1, Jonas Matijosius1, Dariusz Wieckowski4
1 Institute of Mechanical Science, Vilnius Gediminas Technical University, Lithuania
2 Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, Lithuania
3 Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Lithuania
4 Lukasiewicz R&D Network Automotive Industry Institute, Warsaw, Poland

The presented research work analyzes the sensing system, the main aim of which is a raster formation and controlling this process using the optical measuring equipment and high precision angle encoders. Optical measuring equipment are used for the raster position detection, meanwhile angle encoders for controlling the tape speed. The main parameter of raster formation process is fixed transportation speed, but there are difficulties to realize it, because there is imperfection of the device elements. The article analyzes the dispersion of vibration accelerations of the raster formation device and tape in the two directions (transverse and longitudinal) and presents an analysis of their parameters in application of the theory of covariance functions. The results of the measurements of vibration accelerations at the fixed points of the device constructions and the tape were recorded on a time scale in the form of digital arrays (matrices). Values of auto-covariance and inter-covariance functions of digital arrays of the vibration accelerations measurement data were calculated by changing the quantum interval in a time scale. The developed software Matlab 7 in operator package environment was used in the calculations.

Keywords: raster formation and controlling sensing system; vibration signal accelerations; dynamic parameters; covariance function; quantum interval

Received: September 3, 2019; Accepted: October 9, 2019; Published: July 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Fursenko, A., Kilikevicius, A., Kilikeviciene, K., Skeivalas, J., Kasparaitis, A., Matijosius, J., & Wieckowski, D. (2020). Analysis of Dynamic Parameters of the System of Raster Formation and Control. Communications - Scientific Letters of the University of Zilina22(3), 78-88. doi: 10.26552/com.C.2020.3.78-88
Download citation

References

  1. KILIKEVICIUS, A., KASPARAITIS, A. Dynamic research of multi-body mechanical systems of angle measurement. International Journal of Precision Engineering and Manufacturing [online]. 2017, 18(8), p. 1065-1073. ISSN 2234-7593, eISSN 2005-4602. Available from: https://doi.org/10.1007/s12541-017-0125-1 Go to original source...
  2. SIAUDINYTE, L., KILIKEVICIUS, A., SABAITIS, D., GRATTAN, K. T. V. Modal analysis and experimental research into improved centering-leveling devices. Measurement [online]. 2016, 88, p. 9-17. ISSN 0263-2241. Available from: https://doi.org/10.1016/j.measurement.2016.01.044 Go to original source...
  3. JUREVICIUS, M., SKEIVALAS, J., KILIKEVICIUS, A., TURLA, V. Vibrational analysis of length comparator. Measurement [online]. 2017, 103, p. 10-17. ISSN 0263-2241. Available from: https://doi.org/10.1016/j.measurement.2017.02.010 Go to original source...
  4. KILIKEVICIUS, A. KASPARAITIS, A., LAZDINAS, R., KILIKEVICIENE, K. Kinematic and dynamic errors during the measurement of linear displacements using the angle transducers. Mechanics [online]. 2016, 22(3), p. 212-216. ISSN 1392-1207. Available from: https://doi.org/10.5755/j01.mech.22.3.14180 Go to original source...
  5. ZHANG, B., KONOMI, B. A., SANG, H., KARAGIANNIS, G., LIN, G. Full scale multi-output Gaussian process emulator with nonseparable auto-covariance functions. Journal of computational physics [online]. 2015, 300, p. 623-642. ISSN 0021-9991. Available from: https://doi.org/10.1016/j.jcp.2015.08.006 Go to original source...
  6. GUELLA, J. C., MENEGATTO, V. A., PORCU, E. Strictly positive definite multivariate covariance functions on spheres. Journal of Multivariate Analysis [online]. 2018, 166, p. 150-159. ISSN 0047-259X. Available from: https://doi.org/10.1016/j.jmva.2018.03.001 Go to original source...
  7. KITHULGODA, C. I., PEARS, R., NAEEM, M. A. The incremental Fourier classifier: leveraging the discrete Fourier transform for classifying high speed data streams. Expert Systems with Applications [online]. 2018, 97, p. 1-17. ISSN 0957-4174. Available from: https://doi.org/10.1016/j.eswa.2017.12.023 Go to original source...
  8. SINGH, C., SINGH, J. Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments for color object recognition. Optics and Laser Technology [online]. 2018, 106, p. 234-250. ISSN 0030-3992. Available from: https://doi.org/10.1016/j.optlastec.2018.03.033 Go to original source...
  9. ZHANG, L., WANG, J., CHEN, Z. Spectral density of mixtures of random density matrices for qubits. Physics Letters A [online]. 2018, 382(23), p. 1516-1523. ISSN 0375-9601. Available from: https://doi.org/10.1016/j.physleta.2018.04.018 Go to original source...
  10. KURT, A., ERYIGIT, R. Dynamics of a spin-boson model with structured spectral density. Physics Letters A [online]. 2018, 382(19), p. 1262-1267. ISSN 0375-9601. Available from: https://doi.org/10.1016/j.physleta.2018.03.021 Go to original source...
  11. ALOTTA, G., DI PAOLA, M., PINNOLA, F. P. Cross-correlation and cross-power spectral density representation by complex spectral moments. International Journal of Non-Linear Mechanics [online]. 2017, 94, p. 20-27. ISSN 0020-7462. Available from: https://doi.org/10.1016/j.ijnonlinmec.2017.02.001 Go to original source...
  12. BANDT, C., BARNSLEY, M. HEGLAND, M., VINCE, A. Old wine in fractal bottles I: Orthogonal expansions on self-referential spaces via fractal transformations. Chaos Solitons and Fractals [online]. 2016, 91, p. 478-489. ISSN 0960-0779. Available from: https://doi.org/10.1016/j.chaos.2016.07.007 Go to original source...
  13. ZHANG, Z., VANSWEARINGEN, J., BRACH, J. S., PERERA, S., SEJDIC, E. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient method. Computers in Biology and Medicine [online]. 2017, 80, p. 175-184. ISSN 0010-4825. Available from: https://doi.org/10.1016/j.compbiomed.2016.11.009 Go to original source...
  14. LIU, Y., WANG, Y., CHEN, X., ZHANG, C., TAN, Y. Two-stage method for fractal dimension calculation of the mechanical equipment rough surface profile based on fractal theory. Chaos Solitons and Fractals [online]. 2017, 104, p. 495-502. ISSN 0960-0779. Available from: https://doi.org/10.1016/j.chaos.2017.09.012 Go to original source...
  15. FLORINDO, J. B., BRUNO, O. M. Closed contour fractal dimension estimation by the Fourier transform. Chaos Solitons and Fractals [online]. 2011, 44(10), p. 851-861. ISSN 0960-0779. Available from: https://doi.org/10.1016/j.chaos.2011.07.008 Go to original source...
  16. XIE, S., YANG, C., YUAN, X. WANG, X., XIE, Y. Layered online data reconciliation strategy with multiple modes for industrial processes. Control Engineering Practice [online]. 2018, 77, p. 63-72. ISSN 0967-0661. Available from: https://doi.org/10.1016/j.conengprac.2018.05.002 Go to original source...
  17. ODRY, A., FULLER, R., RUDAS, I. J., ODRY, P. Kalman filter for mobile-robot attitude estimation: Novel optimized and adaptive solutions. Mechanical Systems and Signal Processing [online]. 2018, 110, p. 569-589. ISSN 0888-3270. Available from: https://doi.org/10.1016/j.ymssp.2018.03.053 Go to original source...
  18. SONG, C., XIAO, C., LI, X., LI, J., SUI, H. Structure-preserving texture filtering for adaptive image smoothing. Journal of Visual Languages and Computing [online]. 2018, 45, p. 17-23. ISSN 1045-926X. Available from: https://doi.org/10.1016/j.jvlc.2018.02.002 Go to original source...
  19. DU, F., LIU, P., ZHAO, W., TANG, X. Spatial-temporal adaptive feature weighted correlation filter for visual tracking. Signal Processing: Image Communication [online]. 2018, 67, p. 58-70. ISSN 0923-5965. Available from: https://doi.org/10.1016/j.image.2018.05.013 Go to original source...
  20. LI, Y., ZUO, M. J., LIN, J., LIU, J. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mechanical Systems and Signal Processing [online]. 2017, 84, p. 642-658. ISSN 0888-3270, eISSN 1096-1216. Available from: https://doi.org/10.1016/j.ymssp.2016.07.009 Go to original source...
  21. NATHEN, P., HAUSSMANN, M., KRAUSE, M. J., ADAMS, N. A. Adaptive filtering for the simulation of turbulent flows with lattice Boltzmann methods. Computers and Fluids [online]. 2018, 172, p. 510-523. ISSN 0045-7930. Available from: https://doi.org/10.1016/j.compfluid.2018.03.042 Go to original source...
  22. GUCHHAIT, S., BANERJEE, B. Constitutive error based parameter estimation technique for plate structures using free vibration signatures. Journal of Sound and Vibration [online]. 2018, 419, p. 302-317. ISSN 0022-460X. Available from: https://doi.org/10.1016/j.jsv.2018.01.020 Go to original source...
  23. SKEIVALAS, J., JUREVICIUS, M., KILIKEVICIUS, A., TURLA, V. An analysis of footbridge vibration parameters. Measurement [online]. 2015, 66, p. 222-228. ISSN 0263-2241. Available from: https://doi.org/10.1016/j.measurement.2015.02.034 Go to original source...
  24. LI, Y., MULANI, S. B., SCOTT, K. M. L., KAPANIA, R. K., WU, S., FEI, Q. Non-stationary random vibration analysis of multi degree systems using auto-covariance orthogonal decomposition. Journal of Sound and Vibration [online]. 2016, 372, p. 147-167. ISSN 0022-460X. Available from: https://doi.org/10.1016/j.jsv.2016.02.018 Go to original source...
  25. BAI, Z., WANG, C. A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix. Statistics and Probability Letters [online]. 2015, 96, p. 333-340. ISSN 0167-7152. Available from: https://doi.org/10.1016/j.spl.2014.10.002 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.