Communications - Scientific Letters of the University of Zilina 2020, 22(4):153-162 | DOI: 10.26552/com.C.2020.4.153-162
A Comparison of Machine Learning-Based Individual Mobility Classification Models Developed on Sensor Readings from Loosely Attached Smartphones
- 1 Krapina University of Applied Sciences, Krapina, Croatia
- 2 Catholic University of Croatia, Zagreb, Croatia
- 3 Department of Applied Computing, Faculty of Engineering and Computing, University of Zagreb, Croatia
General mobility estimation is demanded for strategy, policy, systems and services developments and operations in transport, urban development and telecommunications. Here is proposed an individual motion readings collection with preserved privacy through loosely fit smartphones, as a novel sole inertial sensors use in commercial-grade smartphones for a wide population data collection, without the need for the new infrastructure and attaching devices. It is shown that the statistical learning-based models of individual mobility classification per means of transport are capable of overcoming the variance introduced by the proposed data collection method. The success of the proposed methodology in a small-scale experiment for the Individual Mobility Classification Model development, using selected statistical learning methods, is demonstrated.
Keywords: mobility classification, smartphone, inertial sensor, statistical learning
Received: February 11, 2020; Accepted: April 27, 2020; Published: October 1, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- FILJAR, R., JEZIC, G., MATIJASEVIC, M. Location-based services: a road towards situation awareness. Journal of Navigation [online]. 2008, 61, p. 573-589 [accessed 2020-01-29]. ISSN: 0373-4633, eISSN 1469-7785. Available from: https://doi.org/10.1017/S0373463308004864
Go to original source...
- SHOAIB, M., BOSCH, S., INCEL, O. D., SCHOLTEN, H., HAVINGA, P. J. M. Fusion of smartphone motion sensors for physical activity recognition. Sensors [online]. 2014, 14, p. 10146-10176 [accessed 2020-01-29]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s140610146
Go to original source...
- COOK, D. J., KRISHNAN, N. C. Activity learning: discovering, recognizing, and predicting human behaviour from sensor data. Hoboken, NJ.: John Wiley & Sons., 2015. ISBN 978-1-118-89376-0.
Go to original source...
- TUCKSON, R. V., EDMUNDS, M., HODGKINS, M. L. Telehealth (special report). The New England Journal of Medicine [online]. 2017, 377(16), p. 1585-1592 [accessed 2020-01-29]. ISSN 0028-4793, eISSN 1533-4406. Available from: https://doi.org/10.1056/NEJMsr1503323
Go to original source...
- GUSTAFSSON, F. Statistical sensor fusion. 2. ed. Linkoeping, Sweden: Studentlitteratur AB, 2013. ISBN 978-9144077321.
- KOK, M., HOL, J., DI SCHOEN, T. B. Using inertial sensors for position and orientation estimation [online]. [accessed 2020-01-29]. 2017. Available from: https://arxiv.org/pdf/1704.06053.pdf
Go to original source...
- VOGEL, S. Comparative biomechanics: life's physical world. 2. ed. Princeton, NJ.: Princeton University Press, 2013. ISBN-13: 978-0691155661.
- GONZALEZ, M. C., HIDALGO, C. A., BARABASI, A-L. Understanding individual human mobility patterns. Nature [online]. 2008, 2008(6), p. 779-782 [accessed 2020-01-29]. eISSN 1476-4687. Available from: https://doi.org/10.1038/nature06958
Go to original source...
- SONG, CH., KOREN, T., WANG, P., BARABASI, A-L. Modelling the scaling properties of human mobility. Nature Physics [online]. 2010, 6(10), p. 818-823 [accessed 2020-01-29]. ISSN 1745-2473, eISSN 1745-2481. Available from: https://doi.org/10.1038/nphys1760
Go to original source...
- HAUSMANN, J. Activity level estimator [online] [accessed 2020-01-29]. MSc thesis. Switzerland: University of Geneva, 2010. Available from: https://www.qualityoflifetechnologies.com/app/uploads/2018/08/ALE_MSc_theses.pdf
- ATTAL, F., MOHAMMED, S., DEDABRISHVILI, M., CHAMROUKHI, F., OUKHELLOU, L., AMIRAT, Y. Physical human activity recognition using wearable sensors. Sensors [online]. 2015, 1, p. 31314-31338 [accessed 2020-01-29]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s151229858
Go to original source...
- PEI, L., LIU, J., GUINNESS, R., CHEN, Y., KUUSNIEMI, H., CHEN, R. Using LS-SVM based motion recognition for smartphone indoor wireless positioning. Sensors [online]. 2012, 12, p. 6155-6175 [accessed 2020-01-29]. ISSN 1424-8220. Available from: https://doi.org/10.3390/s120506155
Go to original source...
- VICSEK, T., ZAFEIRIS, A., 2012. Collective motion. Physics Reports [online]. 2012, 517(3-4), p. 71-140 [accessed 2020-01-29]. ISSN 0370-1573. Available from: https://arxiv.org/abs/1010.5017v2
Go to original source...
- LIU, K., LI, X. Enhancing localization scalability and accuracy via opportunistic sensing. IEEE/ACM Trans. on Networking [online]. 2018, 26(3), p. 1517-1530 [accessed 2020-05-09]. eISSN 1558-2566. Available from: https://doi.org/10.1109/TNET.2018.2838052
Go to original source...
- AHMED, M. E., SONG, J. B. Non-parametric bayesian human motion recognition using a single MEMS tri-axial accelerometer. Sensors [online]. 2012, 12, p. 13185-13211 [accessed 2020-01-29]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s121013185
Go to original source...
- ANJUM, A., ILYAS, M. U. Activity recognition using smartphone sensors. In: 2013 IEEE 10th Consumer Communications and Networking Conference CCNC: proceedings [online]. 2013. ISBN 978-1-4673-3133-3. Available from: https://doi.org/10.1109/CCNC.2013.6488584
Go to original source...
- BIN ABDULLAH, M. F. A., NEGARA, A. F. P., SAYEED, M. S., CHOI, D.-J., MUTHU, K. S. Classification algorithms in human activity recognition using smartphones. International Journal of Biomedical and Biological Engineering [online]. 2012, 6(8), p. 372-379 [accessed 2020-01-29]. ISSN 19984510. Available from: https://publications.waset.org/8520/pdf
- SAMA, S. Smartphone supported activity level estimation [online] [accessed 2020-01-29]. MSc thesis. Oslo, Norway: University of Oslo, 2014. Available from: http://bit.ly/2FWCXzq
- LI, F., SHIRAHAMA, K., NISAR, M. A., KOPING, L., GRZEGORZEK, M. Comparison of feature learning methods for human activity recognition using wearable sensors. Sensors [online]. 2018, 18, p. 679 [accessed 2020-01-29]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s18020679
Go to original source...
- FERREIRA JR, J., CARVALHO, E., FERREIRA, B. V., DE SOUZA, C., SUHARA, Y., PENTLAND, A., PESSI, G. Driver behavior profiling: an investigation with different smartphone sensors and machine learning. PLoS ONE [online]. 2017, 12 [accessed 2020-01-29]. eISSN 1932-6203. Available from: https://doi.org/10.1371/journal.pone.0174959
Go to original source...
- MOSENIA, A., DAI, X., MITTAL, P., JHA, N. K. PinMe: Tracking a smartphone user around the world. IEEE Transactions on Multi-Scale Computing Systems [online]. 2018, 4(3), p. 420-435 [accessed 2020-01-29]. ISSN 2332-7766. Available from: https://doi.org/10.1109/TMSCS.2017.2751462
Go to original source...
- GU F., HU, X., RAMEZANI, M., YCHARYA, D., KHOSHELHAM, K, VALAEE, S., SHANG, J. Indoor localization improved by spatial context - a survey. ACM Computing Surveys [online]. 2019, 52(3) [accessed 2020-05-02]. eISSN 1557-7341. Available from: https://doi.org/10.1145/3322241
Go to original source...
- HAINES, A., HANSON, C., RANGANATHAN, J. Planetary health watch: integrated monitoring in the anthropocene epoch. The Lancet Planetary Health [online]. 2018, 2(4), p. 141-143 [accessed 2020-01-29]. ISSN 25425196. Available from: https://doi.org/10.1016/S2542-5196(18)30047-0
Go to original source...
- CAPELA, N. A., LEMAIRE, E. D., BADDOUR, N. (Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE [online]. 2015, 10(4) [accessed 2020-01-29]. ISSN 19326203. Available from: https://doi.org/10.1371/journal.pone.0124414
Go to original source...
- BLASCO, J., CHEN, T. M., TAPIADOR, J., PERIS-LOPEZ, P. A survey of wearable biometric recognition systems. ACM Computing Surveys [online]. 2016, 49(3) [accessed 2020-05-09]. eISSN 1557-7341. Available from: http://dx.doi.org/10.1145/2968215
Go to original source...
- PALAGHIAS, N. Opportunistic sensing platforms to interpret human behaviour [online] [accessed 2020-05-09]. PhD thesis. Guildford, UK: Faculty of Engineering and Physical Sciences, University of Surrey, 2016. Available from: http://epubs.surrey.ac.uk/841529/1/thesis.pdf
- FILJAR, R., FILIC, M., LUCIC, A., VIDOVIC, K., SARIC, D. Anatomy of origin-destination matrix derived from GNSS alternatives. Coordinates [online]. 2016, 12(10), p. 8-10 [accessed 2020-05-09]. ISSN 0973-2136. Available from: http://mycoordinates.org/pdf/oct16.pdf
- EFRON, B., HASTIE, T. (2016). Computer age statistical inference: algorithms, evidence, and data science [online] [accessed 2020-05-09]. Cambridge, UK: Cambridge University Press, 2016. ISBN 978-1107149892. Available from: https://web.stanford.edu/~hastie/CASI/
Go to original source...
- MOURCOU, Q., FLEURY, A., FRANCO, C., KLOPCIC, F., VUILLERME, N. Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors [online]. 2015, 15, p. 23168-23187 [accessed 2020-05-09]. eISSN 1424-8220. Available from: https://doi.org/10.3390/s150923168
Go to original source...
- Android developers documentation: sensors - Google [online]. [accessed 2020-05-09]. 2020. Available from: https://developer.android.com/guide/topics/sensors
- MATOLCSI, T. Spacetime without reference frames [online] [accessed 2020-01-29]. Budapest, Hungary: Akademiai Kiado, 1993. Available from: http://szofi.elte.hu/~szaboa/MatolcsiKonyvek/pdf/konyv/spacetime.pdf
- KUHN, M., JOHNSON, K. Applied predictive modelling. New York, NY: Springer Science+Business Media, 2013. ISBN 978-1-4614-6848-6
- The R environment for statistical computing (rev. 4.0) - R-Project Team [online]. [accessed 2020-01-29]. Available from: https://www.r-project.org
- MEYER, D., DIMITRIADOU, E., HORNIK, K., WEINGESSEL, A., LEISCH, F., CHANG, CH.-CH., LIN, CH.-CH. e1071: misc functions of the department of statistics, probability theory group (formerly: E1071) [online] [accessed 2020-01-29]. 2018. Available from: https://cran.r-project.org/web/packages/e1071/
- KUHN, M. The caret (classification and regression training) package [online]. [accessed 2020-01-29]. 2019. Available from: https://topepo.github.io/caret/index.html
- HYNDMAN, R., ATHANASOPOULOS, G., BERGMEIR, CH., CACERES, G., CHHAY, L., O'HARA-WILD, M., PETROPOULOS, F., RAZBASH, S., WANG, E., YASMEEN, F., R CORE TEAM, IHAKA, R., REID, D., SHAUB, D., TANG, Y., ZHOU, Z. Forecast: forecasting functions for time series and linear models. CRAN R package, software and documentation [online] [accessed 2020-01-29]. 2019. Available from: https://cran.r-project.org/web/packages/forecast
- ASIM, F. AndroSensor application [online] [accessed 2020-05-03]. 2020. Available from: https://play.google.com/store/apps/details?id=com.fivasim.androsensor&hl=en_US
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.