Communications - Scientific Letters of the University of Zilina 2023, 25(2):E1-E14 | DOI: 10.26552/com.C.2023.041

Analysis of Terrain Modelling Methods in the Coastal Zone

Oktawia Lewicka ORCID...
Department of Geodesy and Oceanography, Gdynia Maritime University, Gdynia, Poland and Marine Technology Ltd., Gdynia, Poland

Geospatial data are increasingly used to model the terrain in the coastal zone, in particular in shallow waterbodies (with a depth of up to 1 m). In order to generate a terrain relief, it is important to choose a method for its modelling that will allow it to be accurately projected. Therefore, the aim of this publication is to analyze the terrain modelling methods in the coastal zone. For the purposes of the research, five most popular methods for terrain modelling were described: Inverse Distance Weighted (IDW), Modified Shepard's Method (MSM), Natural Neighbor Interpolation (NNI), kriging and spline. Each of the methods has been described in a uniform way in terms of: the essence of its operation, mathematical expression and application examples. The advantages and disadvantages of each of the methods for terrain modelling are also discussed. It should be stated that the choice of the method for the terrain modelling of a shallow waterbody is not unambiguous, as it depends on the type of data recorded during bathymetric and photogrammetric measurements.

Keywords: terrain modelling, coastal zone, inverse distance weighted (IDW), modified shepard's method (MSM) natural neighbor interpolation (NNI), kriging, spline
Grants and funding:


This research was funded by the National Centre for Research and Development in Poland, grant number LIDER/10/0030/L-11/19/NCBR/2020. Moreover, this research was funded from the statutory activities of Gdynia Maritime University, grant number WN/PI/2023/03.

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received: December 29, 2022; Accepted: February 28, 2023; Published: April 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lewicka, O. (2023). Analysis of Terrain Modelling Methods in the Coastal Zone. Communications - Scientific Letters of the University of Zilina25(2), E1-14. doi: 10.26552/com.C.2023.041
Download citation

References

  1. LUBCZONEK, J., KAZIMIERSKI, W., ZANIEWICZ, G., LACKA, M. Methodology for combining data acquired by unmanned surface and aerial vehicles to create digital bathymetric models in shallow and ultra-shallow waters. Remote Sensing [online]. 2021, 14(1), 105. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs14010105 Go to original source...
  2. SPECHT, C., LEWICKA, O., SPECHT, M., DABROWSKI, P., BURDZIAKOWSKI, P. Methodology for carrying out measurements of the tombolo geomorphic landform using unmanned aerial and surface vehicles near Sopot Pier, Poland. Journal of Marine Science and Engineering [online]. 2020, 8(6), 384. eISSN 2077-1312. Available from: https://doi.org/10.3390/jmse8060384 Go to original source...
  3. STATECZNY, A., WLODARCZYK-SIELICKA, M., GRONSKA, D., MOTYL, W. Multibeam echosounder and LiDAR in process of 360-degree numerical map production for restricted waters with HydroDron. In: 2018 Baltic Geodetic Congress Geomatics 2018: proceedings. 2018. Go to original source...
  4. SPECHT, M., STATECZNY, A., SPECHT, C., WIDZGOWSKI, S., LEWICKA, O., WISNIEWSKA, M. Concept of an innovative autonomous unmanned system for bathymetric monitoring of shallow waterbodies (INNOBAT system). Energies [online]. 2021, 14(17), 5370. eISSN 1996-1073. Available from: https://doi.org/10.3390/en14175370 Go to original source...
  5. LI, J., HEAP, A. D. Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling and Software [online]. 2014, 53, p. 173-189. ISSN 1364-8152, eISSN 1873-6726. Available from: https://doi.org/10.1016/j.envsoft.2013.12.008 Go to original source...
  6. SPECHT, C., SPECHT, M., DABROWSKI, P. Comparative analysis of active geodetic networks in Poland. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017: proceedings [online]. 2017. ISBN 978-619-7408-02-7, ISSN 1314-2704, p. 163-176. Available from: https://doi.org/10.5593/sgem2017/22/S09.021 Go to original source...
  7. SPECHT, C., SZOT, T., DABROWSKI, P., SPECHT, M. Testing GNSS receiver accuracy in Samsung Galaxy series mobile phones at a sports stadium. Measurement Science and Technology [online]. 2020, 31, 064006. ISSN 0957-0233, eISSN 1361-6501. Available from: https://doi.org/10.1088/1361-6501/ab75b2 Go to original source...
  8. SPECHT, C., WEINTRIT, A., SPECHT, M. A history of maritime radio-navigation positioning systems used in Poland. The Journal of Navigation [online]. 2016, 69(3), p. 468-480. ISSN 0373-4633, eISSN 1469-7785. Available from: https://doi.org/10.1017/S0373463315000879 Go to original source...
  9. HELLWICH, O. Photogrammetric methods. In: Encyclopedia of GIS [online]. SHEKHAR, S., XIONG, H., ZHOU, X. (Eds.). Cham, Switzerland: Springer Cham, 2017. ISBN 978-3-319-17884-4, eISBN 978-3-319-17885-1, p. 1574-1580. Available from: https://doi.org/10.1007/978-3-319-17885-1 Go to original source...
  10. BURDZIAKOWSKI, P., BOBKOWSKA, K. UAV photogrammetry under poor lighting conditions - accuracy considerations. Sensors [online]. 2021, 21(10), 3531. eISSN 1424-8220. Available from: https://doi.org/10.3390/s21103531 Go to original source...
  11. WANG, X., LIU, Y., LING, F., LIU, Y., FANG, F. Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976-2015. ISPRS International Journal of Geo-Information [online]. 2017, 6(3), 68. eISSN 2220-9964. Available from: https://doi.org/10.3390/ijgi6030068 Go to original source...
  12. NIKOLAKOPOULOS, K. G., LAMPROPOULOU, P., FAKIRIS, E., SARDELIANOS, D., PAPATHEODOROU, G. Synergistic use of UAV and USV data and petrographic analyses for the investigation of beach rock formations: a case study from Syros Island, Aegean Sea, Greece. Minerals [online]. 2018, 8(11), 534. eISSN 2075-163X. Available from: https://doi.org/10.3390/min8110534 Go to original source...
  13. SPECHT, M., SPECHT, C., MINDYKOWSKI, J., DABROWSKI, P., MASNICKI, R., MAKAR, A. Geospatial modeling of the tombolo phenomenon in Sopot using integrated geodetic and hydrographic measurement methods. Remote Sensing [online]. 2020, 12(4), 737. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs12040737 Go to original source...
  14. DOUCETTE, P., AGOURIS, P., MUSAVI, M., STEFANIDIS, A. Road center line vectorization by self-organized mapping. International Archives of Photogrammetry and Remote Sensing. 2000, XXXIII(B3), p. 246-253. ISSN 1682-1750.
  15. WANG, C., HUANG, K., SHI, W. An accurate and efficient quaternion-based visualization approach to 2D/3D vector data for the mobile augmented reality map. ISPRS International Journal of Geo-Information [online]. 2022, 11(7), 383. eISSN 2220-9964. Available from: https://doi.org/10.3390/ijgi11070383 Go to original source...
  16. WILLIAMS, R., BRASINGTON, J., VERICAT, D., HICKS, M., LABROSSE, F., NEAL, M. Chapter twenty - monitoring braided river change using terrestrial laser scanning and optical bathymetric mapping. Developments in Earth Surface Processes [online]. 2011, 15, p. 507-532. ISSN 0928-2025, eISSN 2213-588X. Available from: https://doi.org/10.1016/B978-0-444-53446-0.00020-3 Go to original source...
  17. MARCHEL, L., NAUS, K., SPECHT, M. Optimisation of the position of navigational aids for the purposes of SLAM technology for accuracy of vessel positioning. The Journal of Navigation [online]. 2020, 73(2), p. 282-295.ISSN 0373-4633, eISSN 1469-7785. Available from: https://doi.org/10.1017/S0373463319000584 Go to original source...
  18. SAYLAM, K., BROWN, R. A., HUPP, J. R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope. International Journal of Applied Earth Observation and Geoinformation [online]. 2017, 58, p. 191-200. ISSN 1569-8432, eISSN 1872-826X. Available from: https://doi.org/10.1016/j.jag.2017.02.012 Go to original source...
  19. KETELAAR, V. B. H. (Gini). Satellite radar interferometry [online]. Dordrecht, Netherlands: Springer Dordrecht, 2009. ISBN 978-90-481-8125-4, eISBN 978-1-4020-9428-6. Available from: https://doi.org/10.1007/978-1-4020-9428-6 Go to original source...
  20. SOLTANIEH, A., MACCIOTTA, R. Updated understanding of the Ripley landslide kinematics using satellite InSAR. Geosciences [online]. 2022, 12(8), 298. eISSN 2076-3263. Available from: https://doi.org/10.3390/geosciences12080298 Go to original source...
  21. VAN KREVELD, M. Digital elevation models and TIN algorithms. In: Algorithmic foundations of geographic information systems [online]. VAN KREVELD, M., NIEVERGELT, J., ROOS, T., WIDMAYER, P. (Eds.). Vol. 1340. Berlin, Heidelberg, Germany: Springer Berlin, Heidelberg, 1997. ISBN 978-3-540-63818-6, eISBN 978-3-540-69653-7, p. 37-78. Available from: https://doi.org/10.1007/3-540-63818-0_3 Go to original source...
  22. MENG, Q., LIU, Z., BORDERS, B. E. Assessment of regression kriging for spatial interpolation - comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science [online]. 2013, 40(1), p. 28-39. ISSN 1523-040, eISSN 1545-0465. Available from: https://doi.org/10.1080/15230406.2013.762138 Go to original source...
  23. GENCHI, S. A., VITALE, A. J., PERILLO, G. M. E., SEITZ, C., DELRIEUX, C. A. Mapping topobathymetry in a shallow tidal environment using low-cost technology. Remote Sensing [online]. 2020, 12(9), 1394. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs12091394 Go to original source...
  24. PHAM, H. A new criterion for model selection. Mathematics [online]. 2019, 7(12), 1215. eISSN 2227-7390. Available from: https://doi.org/10.3390/math7121215 Go to original source...
  25. WILLMOTT, C. J., MATSUURA, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research [online]. 2005, 30(1), p. 79-82. ISSN 0936-577X, eISSN 1616-1572. Available from: http://dx.doi.org/10.3354/cr030079 Go to original source...
  26. CORTI, G., RANALLI, G., SOKOUTIS, D. Quantitative modelling of geological processes. Tectonophysics [online]. 2010, 484(1-4), p. 1-3. ISSN 0040-1951, eISSN 1879-3266. Available from: https://doi.org/10.1016/j.tecto.2009.09.004 Go to original source...
  27. TEOFILO, G., GIOIA, D., SPALLUTO, L. Integrated geomorphological and geospatial analysis for mapping fluvial landforms in Murge Basse Karst of Apulia (Southern Italy). Geosciences [online]. 2019, 9(10), 418. eISSN 2076-3263. Available from: https://doi.org/10.3390/geosciences9100418 Go to original source...
  28. LUBCZONEK, J., TROJANOWSKI, J., WLODARCZYK-SIELICKA, M. Application of threedimensional navigational information in electronic chart for inland shipping (in Polish). Archives of Photogrammetry, Cartography and Remote Sensing. 2012, 23, p. 261-269. eISSN 2391-9477.
  29. LU, G. Y., WONG, D. W. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences [online]. 2008, 34(9), p. 1044-1055. ISSN 0098-3004, eISSN 1873-7803. Available from: https://doi.org/10.1016/j.cageo.2007.07.010 Go to original source...
  30. LI, Z., WANG, K., MA, H., WU, Y. An adjusted inverse distance weighted spatial interpolation method. In: 3rd International Conference on Communications, Information Management and Network Security CIMNS 2018: proceedings [online]. 2018. ISSN 2352-538X. Available from: https://doi.org/10.2991/cimns-18.2018.29 Go to original source...
  31. MAKAR, A., SPECHT, C., SPECHT, M., DABROWSKI, P., BURDZIAKOWSKI, P., LEWICKA, O. Seabed topography changes in the Sopot pier zone in 2010-2018 influenced by tombolo phenomenon. Sensors [online]. 2020, 20(21), 6061. eISSN 1424-8220. Available from: https://doi.org/10.3390/s20216061 Go to original source...
  32. BARTIER, P. M., KELLER, C. P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers and Geosciences [online]. 1996, 22(7), p. 795-799. ISSN 0098-3004, eISSN 1873-7803. Available from: https://doi.org/10.1016/0098-3004(96)00021-0 Go to original source...
  33. DAVIS, J. C. Statistics and data analysis in geology. 3. ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002. ISBN 978-0-471-17275-8.
  34. STATECZNY, A. Comparative navigation methods (in Polish). Gdansk, Poland: Gdansk Scientific Society, 2004. ISBN 83-87359-88-2.
  35. TOMCZAK, M. Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW) - cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis. 1998, 2(2), p. 18-30. ISSN 1480-8943.
  36. MALEIKA, W. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics [online]. 2020, 12, p. 397-407. ISSN 1866-9298, eISSN 1866-928X. Available from: https://doi.org/10.1007/s12518-020-00307-6 Go to original source...
  37. GOLDSZTEJN, P., SKRZYPEK, G. Applications of numeric interpolation methods to the geological surface mapping using irregularly spaced data (in Polish). Polish Geological Review. 2004, 52, p. 233-236. ISSN 0033-2151.
  38. Surfer® user's guide - Golden software LLC [online] [accessed 2023-03-16]. Available from: https://downloads.goldensoftware.com/guides/Surfer20UserGuide.pdf
  39. PHOTHONG, T., DUMRONGCHAI, P., SIRIMONTREE, S., WITCHAYANGKOON, B. Spatial interpolation of unconfined compressive strength for soft Bangkok clay via random technique and modified inverse distance weight method. International Transaction Journal of Engineering, Management, and Applied Sciences and Technologies [online]. 2017, 8(1), 13-22. ISSN 2228-9860, eISSN 1906-9642. Available from: http://TUENGR.COM/V08/013.pdf
  40. SHEPARD, D. A Two-dimensional interpolation for irregularly-spaced data. In: 23rd Association for Computing Machinery National Conference ACM 1968: proceedings [online]. 1968. p. 517-524. Available from: https://doi.org/10.1145/800186.810616 Go to original source...
  41. FRANKE, R., NIELSON, G. Smooth interpolation of large sets of scattered data. International Journal for Numerical Methods in Engineering [online]. 1980, 15(10), p. 1691-1704. eISSN 1097-0207. Available from: https://doi.org/10.1002/nme.1620151110 Go to original source...
  42. RENKA, R. J. Multivariate interpolation of large sets of scattered data. ACM Transactions on Mathematical Software [online]. 1988, 14(2), p. 139-148. ISSN 0098-3500, eISSN 1557-7295. Available from: https://doi.org/10.1145/45054.45055 Go to original source...
  43. BASSO, K., DE AVILA ZINGANO, P. R., DAL SASSO FREITAS, C. M. Interpolation of scattered data: investigating alternatives for the modified Shepard method. In: 12th Brazilian Symposium on Computer Graphics and Image Processing: proceedings. 1999.
  44. MALVIC, T., IVSINOVIC, J., VELIC, J., SREMAC, J., BARUDZIJA, U. Application of the Modified Shepard's Method (MSM): a case study with the interpolation of neogene reservoir variables in Northern Croatia. Stats [online]. 2020, 3(1), p. 68-83. eISSN 2571-905X. Available from: https://doi.org/10.3390/stats3010007 Go to original source...
  45. JANKOVIC, V. Quadratic functions in several variables. The Teaching of Mathematics [online]. 2005, VIII(2), p. 53-60. ISSN 1451-4966, eISSN 2406-1077.
  46. ZEVENBERGEN, L. W., THORNE, C. R. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms [online]. 1987, 12(1), p. 47-56. eISSN 1096-9837. Available from: https://doi.org/10.1002/esp.3290120107 Go to original source...
  47. SALKIND, N. Encyclopedia of measurement and statistics [online]. Vol. 2. Thousand Oaks, CA, USA: Sage Publications, 2007. ISBN 9781412916110, eISBN 9781412952644. Available from: https://doi.org/10.4135/9781412952644 Go to original source...
  48. FRANKE, R. Scattered data interpolation: tests of some methods. Mathematics of Computation [online]. 1982, 38(157), p. 181-200. ISSN 0025-5718. Available from: https://hdl.handle.net/10945/40152 Go to original source...
  49. SIBSON, R. A Brief description of natural neighbor interpolation. In: Interpreting multivariate data. BARNETT, V. (Ed.). Hoboken, NJ, USA: John Wiley and Sons, Inc., 1981. ISBN 978-0471280392, p. 21-36.
  50. FARIN, G. Surfaces over Dirichlet tessellations. Computer Aided Geometric Design [online]. 1990, 7(1-4), p. 281-292. ISSN 0167-8396, eISSN 1879-2332. Available from: https://doi.org/10.1016/0167-8396(90)90036-Q Go to original source...
  51. PIPER, B. Properties of local coordinates based on Dirichlet tessellations. In: Geometric modelling. FARIN, G., NOLTEMEIER, H., HAGEN, H., KNODEL, W. (Eds.). Vol. 8. Vienna, Austria: Springer Vienna, 1993. ISBN 3-211-83603-9, p. 227-239. Go to original source...
  52. CUETO, E., SUKUMAR, N., CALVO, B., MARTINEZ, M. A., CEGONINO, J., DOBLARE, M. Overview and recent advances in natural neighbour Galerkin methods. Archives of Computational Methods in Engineering [online]. 2003, 10(4), p. 307-384. ISSN 1134-3060, eISSN 1886-1784. Available from: https://doi.org/10.1007/BF02736253 Go to original source...
  53. SIBSON, R. A Vector identity for the Dirichlet tessellation. Mathematical Proceedings of the Cambridge Philosophical Society [online]. 1980, 87(1), p. 151-155. ISSN 0305-0041, eISSN 1469-8064. Available from: https://doi.org/10.1017/S0305004100056589 Go to original source...
  54. TAMASSIA, R. Introduction to Voronoi diagrams [online] [accessed 2023-03-16]. Available from: https://cs.brown.edu/courses/cs252/misc/resources/lectures/pdf/notes09.pdf
  55. LEDOUX, H., GOLD, C. An efficient natural neighbour interpolation algorithm for geoscientific modelling. In: Developments in spatial data handling. FISHER, P. F. (Ed.). Berlin, Heidelberg, Germany: Springer Berlin, Heidelberg, 2005. ISBN 978-3-540-22610-9, eISBN 978-3-540-26772-0, p. 97-108. Available from: https://doi.org/10.1007/3-540-26772-7_8 Go to original source...
  56. VORONOI, G. A New A new applications of the continuous parameters in the theory of quadratic forms. First memoir. On some properties of the perfect positive quadratic forms (in English) Journal for Pure and Applied Mathematics. 1908, 134, p. 97-178. ISSN 0075-4102, eISSN 1435-5345. Go to original source...
  57. THIESSEN, A. H. Precipitation averages for large areas. Monthly Weather Review [online]. 1911, 39(7), p. 1082-1084. ISSN 0027-0644, elSSN 1520-0493. Available from: http://dx.doi.org/10.1175/1520-0493(1911)392.0.CO;2 Go to original source...
  58. SCHUMANN, A. H. Thiessen polygon. In: Hydrology and lakes. Encyclopedia of earth science. HERSCHY, R. W., FAIRBRIDGE, R. W. (Eds.). Dordrecht, Netherlands: Springer Dordrecht, 1998. ISBN 9780412740602, p. 648-649. Go to original source...
  59. ANGELUCCI, G., MOLLAIOLI, F. Voronoi-like grid systems for tall buildings. Frontiers in Built Environment [online]. 2018, 4, 78. eISSN 2297-3362. Available from: https://doi.org/10.3389/fbuil.2018.00078 Go to original source...
  60. NONOGAKI, S., MASUMOTO, S., NEMOTO, T., NAKAZAWA, T. Voxel modeling of geotechnical characteristics in an urban area by natural neighbor interpolation using a large number of borehole logs. Earth Science Informatics [online]. 2021, 14, p. 871-882. ISSN 1865-0473, eISSN 1865-0481. Available from: https://doi.org/10.1007/s12145-021-00600-x Go to original source...
  61. COLEMAN, J. B., YAO, X., JORDAN, T. R., MADDEN, M. Holes in the ocean: filling voids in bathymetric Lidar data. Computers and Geosciences [online]. 2011, 37(4), p. 474-484. ISSN 0098-3004, eISSN 1873-7803. Available from: https://doi.org/10.1016/j.cageo.2010.11.008 Go to original source...
  62. KLEIJNEN, J. P. C. Kriging metamodeling in simulation: a review. European Journal of Operational Research [online]. 2009, 192(3), p. 707-716. ISSN 0377-2217, eISSN 0377-2217. Available from: https://doi.org/10.1016/j.ejor.2007.10.013 Go to original source...
  63. MATHERON, G. Principles of geostatistics. Economic Geology [online]. 1963, 58(8), p. 1246-1266. ISSN 0361-0128, eISSN 1554-0774. Available from: http://dx.doi.org/10.2113/gsecongeo.58.8.1246 Go to original source...
  64. FANCHI, J. R. Chapter 2 - Geological modeling. In: Principles of applied reservoir simulation. FANCHI, J. R. (Ed.). 4. ed. Houston, TX, USA: Gulf Professional Publishing, 2018. ISBN 9780128155639, eISBN 9780128155646, p. 9-33. Go to original source...
  65. MERT, B. A., DAG, A. A Computer program for practical semivariogram modeling and ordinary kriging: a case study of porosity distribution in an oil field. Open Geosciences [online]. 2017, 9(1), p. 663-674. ISSN 2391-5447. Available from: https://doi.org/10.1515/geo-2017-0050 Go to original source...
  66. WONG, A. H., KWON, T. J. Advances in regression kriging-based methods for estimating statewide winter weather collisions: an empirical investigation. Future Transportation [online]. 2021, 1(3), p. 570-589. eISSN 2673-7590. Available from: https://doi.org/10.3390/futuretransp1030030 Go to original source...
  67. MONTES, F., HERNANDEZ, M. J., CANELLAS, I. A Geostatistical approach to cork production sampling estimation in Quercus Suber Forests. Canadian Journal of Forest Research. 2013, 35(12), p. 2787-2796. ISSN 0045-5067. Go to original source...
  68. JOURNEL, A. G., HUIJBREGTS, CH. J. Mining geostatistics. London, UK: Academic Press, 1978. ISBN 0123910501.
  69. CHE, D., JIA, Q. Three-dimensional geological modeling of coal seams using weighted kriging method and multi-source data. IEEE Access [online]. 2019, 7, p. 118037-118045. eISSN 2169-3536. Available from: https://doi.org/10.1109/ACCESS.2019.2936811 Go to original source...
  70. DAI, H., REN, L., WANG, M., XUE, H. Water distribution extracted from mining subsidence area using kriging interpolation algorithm. Transactions of Nonferrous Metals Society of China [online]. 2011, 21(s3), s723-s726. ISSN 1003-6326, eISSN 2210-3384. Available from: https://doi.org/10.1016/S1003-6326(12)61669-0 Go to original source...
  71. MALVIC, T., IVSINOVIC, J., VELIC, J., RAJIC, R. Kriging with a small number of data points supported by jack-knifing, a case study in the Sava Depression (Northern Croatia). Geosciences [online]. 2019, 9(1), 36. eISSN 2076-3263. Available from: https://doi.org/10.3390/geosciences9010036 Go to original source...
  72. VAN BEERS, W. C. M., KLEIJNEN, J. P. C. Kriging for interpolation in random simulation. Journal of the Operational Research Society [online]. 2003, 54(3), p. 255-262. ISSN 0160-5682, eISSN 1476-9360. Available from: https://doi.org/10.1057/palgrave.jors.2601492 Go to original source...
  73. WOJCIECH, M. Kriging method optimization for the process of DTM creation based on huge data sets obtained from MBESs. Geosciences [online]. 2018, 8(12), 433. eISSN 2076-3263. Available from: https://doi.org/10.3390/geosciences8120433 Go to original source...
  74. PARENTE, C., VALLARIO, A. Interpolation of single beam echo sounder data for 3D bathymetric model. International Journal of Advanced Computer Science and Applications (IJACSA) [online]. 2019, 10(10), p. 6-13. ISSN 2158-107X, eISSN 2156-5570. Available from: https://doi.org/10.14569/IJACSA.2019.0101002 Go to original source...
  75. LAM, N. S.-N. Spatial interpolation methods: a review. The American Cartographer [online]. 1983, 10(2), p. 129-150. ISSN 1523-0406, eISSN 1545-0465. Available from: https://doi.org/10.1559/152304083783914958 Go to original source...
  76. CHAPRA, S. C., CANALE, R. P. Numerical methods for engineers. 6. ed. New York, NY, USA: McGraw Hill, 2009. ISBN 978-0-07-340106-5.
  77. BURDEN, R. L., FAIRES, J. D. Numerical analysis. 9. ed. Boston, MA, USA: Brooks/Cole Publishing Company, 2010. ISBN 978-0-538-73351-9.
  78. DIAZ-ARAUJO, M., MEDINA, A., CISNEROS-MAGANA, R., RAMIREZ, A. Periodic steady state assessment of microgrids with photovoltaic generation using limit cycle extrapolation and cubic splines. Energies [online]. 2018, 11(8), 2096. eISSN 1996-1073. Available from: https://doi.org/10.3390/en11082096 Go to original source...
  79. Surfer help - Grid spline smooth [online] [accessed 2023-03-16]. Available from: https://surferhelp.goldensoftware.com/gridmenu/idm_splinesmooth.htm
  80. WANG, Y. Smoothing splines: methods and applications [online]. 1. ed. London, UK: Chapman and Hall/CRC, 2011. eISBN 9780429146923. Available from: https://doi.org/10.1201/b10954 Go to original source...
  81. KUSUMA, D., MURDIMANTO, A., SUKRESNO, B., JATISWORO, D. Comparison of interpolation methods for sea surface temperature data. JFMR (Journal of Fisheries and Marine Research) [online]. 2018, 2(2), p. 103-115. eISSN 2581-0294. Available from: https://doi.org/10.21776/ub.jfmr.2018.002.02.7 Go to original source...
  82. NORTH, R. P., LIVINGSTONE, D. M. Comparison of linear and cubic spline methods of interpolating lake water column profiles: interpolation of lake profiles. Limnology and Oceanography: Methods [online]. 2013, 11(4), p. 213-224. eISSN 1541-5856. Available from: https://doi.org/10.4319/lom.2013.11.213 Go to original source...
  83. LEWICKA, O., SPECHT, M., STATECZNY, A., SPECHT, C., BRCIC, D., JUGOVIC, A., WIDZGOWSKI, S., WISNIEWSKA, M. Analysis of GNSS, hydroacoustic and optoelectronic data integration methods used in hydrography. Sensors [online]. 2021, 21(23), 7831. eISSN 1424-8220. Available from: https://doi.org/10.3390/s21237831 Go to original source...
  84. KARAKI, A. A., BIBULI, M., CACCIA, M., FERRANDO, I., GAGLIOLO, S., ODETTI, A., SGUERSO, D. Multi-platforms and multi-sensors integrated survey for the submerged and emerged areas. Journal of Marine Science and Engineering [online]. 2022, 10(6), 753. eISSN 2077-1312. Available from: https://doi.org/10.3390/jmse10060753 Go to original source...
  85. STATECZNY, A. The neural method of sea bottom shape modelling for the spatial maritime information system. In: Maritime engineering and ports II. BREBBIA, C.A., OLIVELLA, J. (Eds.). Vol. 51. Southampton, UK: WIT Press, 2000. ISBN 1-85312-829-5, p. 251-259.
  86. WLODARCZYK-SIELICKA, M., STATECZNY, A. Fragmentation of hydrographic big data into subsets during reduction process. In: Baltic Geodetic Congress 2017 BGC 2017: proceedings [online]. IEEE. 2017. ISBN 978-1-5090-6041-2, eISBN 978-1-5090-6040-5. Available from: https://doi.org/10.1109/BGC.Geomatics.2017.67 Go to original source...
  87. WLODARCZYK-SIELICKA, M., STATECZNY, A., LUBCZONEK, J. The reduction method of bathymetric datasets that preserves true geodata. Remote Sensing [online]. 2019, 11(13), 1610. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs11131610 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.