Communications - Scientific Letters of the University of Zilina 2025, 27(2):E21-E34 | DOI: 10.26552/com.C.2025.021

Dynamic Routing in Urban Transport Logistics under Limited Traffic Information

Viktor Danchuk ORCID...1, Oleksandr Hutarevych ORCID...1, *, Serhii Taraban ORCID...2
1 Department of Information Analysis and Information Security, Faculty of Transport and Information Technologies, National Transport University, Kyiv, Ukraine
2 Department of Transport Safety Research, Issues of Normalization, Standardization and Metrology, State Enterprise "State Road Transport Research Institute", Kyiv, Ukraine

A method for online dynamic routing of freight delivery under limited traffic information using an ant colony algorithm, has been proposed. This method leverages real-time IoT data on traffic flow (TF) intensity from traffic sensors on urban road network (URN) sections, combined with averaged historical data on TF parameters (speed, density, intensity) obtained from traffic sensors on representative sections of homogeneous clusters within the URN. The procedure for forming homogeneous clusters within the URN and identifying representative sections is described. The results of simulation studies using the URN of Kyiv as an example indicate the potential of this method for urban transport logistics in conditions of complex traffic.

Keywords: adaptive information system, AI methods of discrete optimization, dynamic routing, transport logistics, urban road network, IoT technologies, dynamic traveling salesman problem
Grants and funding:

The authors received no financial support for the research, authorship and/or publication of this article.

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received: September 5, 2024; Accepted: January 29, 2025; Prepublished online: February 19, 2025; Published: April 1, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Danchuk, V., Hutarevych, O., & Taraban, S. (2025). Dynamic Routing in Urban Transport Logistics under Limited Traffic Information. Communications - Scientific Letters of the University of Zilina27(2), E21-34. doi: 10.26552/com.C.2025.021
Download citation

References

  1. POP, P. C., COSMA, O., SABO, C., SITAR, C. P. A comprehensive survey on the generalized traveling salesman problem. European Journal of Operational Research [online]. 2024, 314(3), p. 819-835 [accessed 2024-08-10]. ISSN 0377-2217. Available from: https://doi.org/10.1016/j.ejor.2023.07.022 Go to original source...
  2. SAWIK, B. Optimizing last-mile delivery: a multi-criteria approach with automated smart lockers, capillary distribution and crowdshipping. Logistics [online]. 2024, 8(2), 52 [accessed 2024-08-10]. ISSN 2305-6290. Available from: https://doi.org/10.3390/logistics8020052 Go to original source...
  3. GIUFFRIDA, N., FAJARDO-CALDERIN, J., MASEGOSA, A. D., WERNER, F., STEUDTER, M., PILLA, F. Optimization and machine learning applied to last-mile logistics: a review. Sustainability [online]. 2022, 14(9), 5329 [accessed 2024-08-10]. ISSN 2071-1050. Available from: https://doi.org/10.3390/su14095329 Go to original source...
  4. ZHANG, H., ZHANG, Q., MA, L., LIU, Y. A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Information Sciences [online]. 2019, 490, p. 166-190 [accessed 2024-08-10]. ISSN 0020-0255. Available from: https://doi.org/10.1016/j.ins.2019.03.070 Go to original source...
  5. BELHAIZA, S., M'HALLAH, R., BRAHIM, G. B., LAPORTE, G. Three multi-start data-driven evolutionary heuristics for the vehicle routing problem with multiple time windows. Journal of Heuristics [online]. 2019, 25(3), p. 485-515 [accessed 2024-08-10]. ISSN 1572-9397. Available from: https://doi.org/10.1007/s10732-019-09412-1 Go to original source...
  6. HOOGEBOOM, M., DULLAERT, W. Vehicle routing with arrival time diversification. European Journal of Operational Research [online]. 2019, 275(1), p. 93-107 [accessed 2024-08-10]. ISSN 0377-2217. Available from: https://doi.org/10.1016/j.ejor.2018.11.020 Go to original source...
  7. XU, Y. Logistics distribution for path optimization using artificial neural network and decision support system. Research Square [online]. 2022, p. 1-17 [accessed 2024-08-10]. Available from: https://doi.org/10.21203/rs.3.rs-1249887/v1 Go to original source...
  8. YUAN, J., SONG, J., ZHANG, Y., JIANG, C., XU, F. Planning of dynamic routing of logistics in urban public sports facilities based on MAS. In: 4th International Conference on Transportation Engineering: proceedings. 2013. ISBN 9780784413159. p. 1156-1162. Go to original source...
  9. ABOUSAEIDI, M., FAUZI, R., MUHAMAD, R. Geographic Information System (GIS) modeling approach to determine the fastest delivery routes. Saudi Journal of Biological Sciences [online]. 2015, 23(5), p. 1-27 [accessed 2024-08-13]. ISSN 1319-562X. Available from: https://doi.org/10.1016/j.sjbs.2015.06.004 Go to original source...
  10. ROTHKRANTZ, L. Hybrid dynamic route planners. In: 19th International Conference on Computer Systems and Technologies: proceedings. ACM, 2018. ISBN 9781450364256. p. 12-19. Go to original source...
  11. TSOUKAS, V., BOUMPA, E., CHIOKTOUR, V., KALAFATI, M., SPATHOULAS, G., KAKAROUNTAS, A. Development of a dynamically adaptable routing system for data analytics insights in logistic services. Analytics [online]. 2023, 2(2), p. 328-345 [accessed 2024-08-13]. ISSN 2813-2203. Available from: https://doi.org/10.3390/analytics2020018 Go to original source...
  12. LYU, Z., PONS, D., ZHANG, Y, JI, Z. Freight operations modelling for urban delivery and pickup with flexible routing: cluster transport modelling incorporating discrete-event simulation and GIS. Infrastructures [online]. 2021, 6(12), 18. ISSN 2412-3811 [accessed 2024-08-13]. Available from: https://doi.org/10.3390/infrastructures6120180 Go to original source...
  13. RAZA, S., AL-KAISY, A., TEIXEIRA, R., MEYER, B. The role of GNSS-RTN in transportation applications. Encyclopedia [online]. 2022, 2(3), p. 1237-1249 [accessed 2024-08-13]. ISSN 2673-8392. Available from: https://doi.org/10.3390/encyclopedia2030083 Go to original source...
  14. BASTOS, L., BUIST, P., CEFALO, R., GONCALVES, J. A. Kinematic Galileo and GPS performances in aerial, terrestrial, and maritime environments. Remote Sensing [online]. 2022, 14(14), 3414 [accessed 2024-08-14]. ISSN 2074-4292. Available from: https://doi.org/10.3390/rs14143414 Go to original source...
  15. BADOLE, M. H., THAKARE, A. D. An optimized framework for VANET routing: a multi-objective hybrid model for data synchronization with digital twin. International Journal of Intelligent Networks [online]. 2023, 4, p. 272-282 [accessed 2024-08-14]. ISSN 2666-6030. Available from: https://doi.org/10.1016/j.ijin.2023.10.001 Go to original source...
  16. SAOUD, B., SHAYEA, I., YAHYA, A. E., SHAMSAN, Z. A., ALHAMMADI, A., ALAWAD, M. A., ALKHRIJAH, Y. Artificial Intelligence, Internet of things and 6G methodologies in the context of Vehicular Ad-hoc Networks (VANETs): survey. ICT Express [online]. 2024, 10(4), p. 959-980 [accessed 2024-08-14]. ISSN 2405-9595. Available from: https://doi.org/10.1016/j.icte.2024.05.008 Go to original source...
  17. MOUHCINE, E., MANSOURI, K., MOHAMED, Y. Solving traffic routing system using VANet strategy combined with a distributed swarm intelligence optimization. Journal of Computer Science [online]. 2019, 14(11), p. 1499-1511 [accessed 2024-08-15]. ISSN 1549-3636. Available from: https://doi.org/10.3844/jcssp.2018.1499.1511 Go to original source...
  18. PARK, J., MURPHEY, Y. L., MCGEE, R., KRISTINSSON, J. G., KUANG M. L., PHILLIPS, A. M. Intelligent trip modeling for the prediction of an origin-destination traveling speed profile. IEEE Transactions on Intelligent Transportation Systems [online]. 2014, 15(3), p. 1039-1053 [accessed 2024-08-15]. ISSN 1558-0016. Available from: https://doi.org/10.1109/tits.2013.2294934 Go to original source...
  19. CHAI, H., ZHANG, H. M., GHOSAL, D., CHUAH C.-N. Dynamic traffic routing in a network with adaptive signal control. Transportation Research Part C: Emerging Technologies [online]. 2017, 85, p. 64-85 [accessed 2024-08-16]. ISSN 0968-090X. Available from: https://doi.org/10.1016/j.trc.2017.08.017 Go to original source...
  20. YAVUZ, M. N., OZEN, H. Calibration of microscopic traffic simulation of urban road network including mini-roundabouts and unsignalized intersection using open-source simulation tool. Scientific Journal of Silesian University of Technology. Series Transport [online]. 2024, 122, p. 305-318 [accessed 2024-08-16]. ISSN 2450-1549. Available from: https://doi.org/10.20858/sjsutst.2024.122.17 Go to original source...
  21. RUSSO, F., COMI, A. Sustainable urban delivery: the learning process of path costs enhanced by information and communication technologies. Sustainability [online]. 2021, 13(23), 13103 [accessed 2024-08-18]. ISSN 2071-1050. Available from: https://doi.org/10.3390/su132313103 Go to original source...
  22. DANCHUK, V., COMI, A., WEISS, C., SVATKO, V. The optimization of cargo delivery processes with dynamic route updates in smart logistics. Eastern-European Journal of Enterprise Technologies [online]. 2023, 2(3), p. 64-73 [accessed 2024-08-18]. ISSN 1729-4061. Available from: https://doi.org/10.15587/1729-4061.2023.277583 Go to original source...
  23. ZHANG, N. Smart logistics path for cyber-physical systems with internet of things. IEEE Access [online]. 2018, 6, p. 70808-70819 [accessed 2024-08-18]. ISSN 2169-3536. Available from: https://doi.org/10.1109/access.2018.2879966 Go to original source...
  24. NG, K. K. H., LEE, C. K. M., ZHANG, S. Z., WU, K., HO, W. A multiple colonies artificial bee colony algorithm for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion. Computers and Industrial Engineering [online]. 2017, 109, p. 151-168 [accessed 2024-08-18]. ISSN 0360-8352. Available from: https://doi.org/10.1016/j.cie.2017.05.004 Go to original source...
  25. ZAJKANI, M. A., BAGHDORANI, R. R., HAERI, M. Model predictive based approach to solve DVRP with traffic congestion. IFAC-PapersOnLine [online]. 2021, 54(21), p. 163-167 [accessed 2024-08-19]. ISSN 2405-8963. Available from: https://doi.org/10.1016/j.ifacol.2021.12.028 Go to original source...
  26. LIU, H., LEE, A., LEE, W., GUO. P. DAACO: adaptive dynamic quantity of ant ACO algorithm to solve the traveling salesman problem. Complex and Intelligent Systems [online]. 2023, 9, p. 4317-4330 [accessed 2024-08-19]. ISSN 2198-6053. Available from: https://doi.org/10.1007/s40747-022-00949-6 Go to original source...
  27. ARTHUR, D., VASSILVITSKII, S. K-means++: the advantages of careful seeding. In: 18th Annual ACM-SIAM Symposium on Discrete Algorithms: proceedings. 2007. p. 1027-1035.
  28. LIKAS, A., VLASSIS, N., VERBEEK., J. J. The global k-means clustering algorithm. Pattern Recognition [online]. 2003, 36(2), p. 451-461 [accessed 2024-08-17]. ISSN 0031-3203. Available from: https://doi.org/10.1016/s0031-3203(02)00060-2 Go to original source...
  29. DORIGO, M., DI CARO, G. The ant colony optimization meta-heuristic. In: New idea in optimization. CORNE, D., DORIGO, M., GLOVER, F. (Eds.). London: McGrow-Hill, 1999. ISBN 9780077095062, p. 11-32. Go to original source...
  30. KERNER, B. S. Introduction to Modern Traffic Flow Theory and Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN 9783642026041. Go to original source...
  31. PUCHKOVSKA, G. O., MAKARENKO, S. P., DANCHUK, V. D., KRAVCHUK, A. P., BARAN, J., KOTELNIKOVA, E. N., FILATOV, S. K. Dynamics of molecules and phase transitions in the crystals of pure and binary mixtures of n-paraffins. Journal of Molecular Structure [online]. 2002, 614(1-3), p. 159-166 [accessed 2024-08-25]. ISSN 0022-2860. Available from: https://doi.org/10.1016/s0022-2860(02)00237-5 Go to original source...
  32. PUCHKOVSKA, G. O., DANCHUK, V. D., MAKARENKO, S. P., KRAVCHUK, A. P., KOTELNIKOVA, E. N., FILATOV, S. K. Resonance dynamical intermolecular interaction in the crystals of pure and binary mixture n-paraffins. Journal of Molecular Structure [online]. 2004, 708(1-3), p. 39-45 [accessed 2024-08-25]. ISSN 0022-2860. Available from: https://doi.org/10.1016/j.molstruc.2004.02.010 Go to original source...
  33. DANCHUK, V. D., KOZAK, L. S., DANCHUK, M. V. Stress testing of business activity using the synergetic method of risk assessment. Actual Problems of Economics. 2015, 171(9), p. 189-198. ISSN 1993-6788.
  34. DBN B.2.3-5: 2018 DBN V.2.3-5:2018. Streets and roads of settlements / Vulytsi ta dorohy naselenykh punktiv. Minrehionbud (in Ukrainien) [online] [accessed 2024-08-25]. Available from: https://e-construction.gov.ua/laws_detail/3199686959802877315?doc_type=2
  35. Google maps [online] [accessed 2024-08-29]. Available from: https://www.google.com/maps
  36. Bing Maps Routes API - Microsoft Learn [online] [accessed 2024-08-29]. Available from: https://learn.microsoft.com/en-us/bingmaps/rest-services/routes/
  37. Nova Poshta branches map - Nova Poshta website [online] [accessed 2024-08-29]. Available from: https://novapost.com/en-ua/departments
  38. Flir official website [online] [accessed 2024-08-29]. Available from: https://www.flir.com/

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.